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Abstract
Neural representations can encode complex signals, such as 3D space, efficiently. They demonstrate considerable capabilities
in novel view synthesis (NVS), which aims to output the appearance from an unknown viewpoint given a set of images
and camera poses. In novel view synthesis, they represent the state-of-the-art in terms of achieved quality. The results
achieved in Novel View Synthesis can reshape media acquisition processes in professional and amateur environments.
However, current state-of-the-art techniques present considerable drawbacks, such as the number of images required to
achieve such results. Our solution mitigates this problem by presenting a novel approach to generate geometrically consistent
image transitions between viewpoints using View Morphing. Our VM-NeRF approach does not leverage prior knowledge
about the scene structure, as View Morphing is based on the general principles of projective geometry. VM-NeRF tightly
integrates this geometrical view generation process during the training procedure of standard NeRF approaches. Notably,
this procedure allows for improved novel view synthesis, especially when few views are available. Preliminary experiments
shows a consistent improvement with respect to current methods that tackle sparse viewpoints in NeRF models. We report a
gain of PSNR up to 1.8dB and 1.0dB when eight and four views are used for training, respectively.
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1. Introduction
Given a set of known camera poses and their rendered
viewpoints of a scene, Novel View Synthesis (NVS) aims
to generate unseen viewpoints [1]. NVS’s most direct
application is in the entertainment sector [2], includ-
ing film, gaming, and virtual or augmented reality [3].
New advancements in NVS can significantly simplify the
creation of digital twins of real subjects such as people,
animals, static objects, or even entire scenes. Digital
twins can have various uses, and one such application is
in games, where the assets necessary can be quickly digi-
tized from the real world and used inside. Digital twins
are also helpful to quickly add digital effects to movies,
as real-world actors or objects once acquired. Investing
in NVS leads to faster time-to-market, lower costs, and
customized products in the entertainment sector. Further-
more, advancements in NVS can help the preservation,
dissemination and analysis of Italian cultural heritage,
especially the less-known assets.

Novel View Synthesis state-of-the-art is currently ob-
tained with Neural Radiance Fields (NeRF) and its evolu-
tions [4, 5]. NeRF formulates the problem as the resolu-
tion of a volumetric function. The volumetric function is
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optimized on a single scene, avoiding dataset bias prob-
lems and making the training less data-hungry. It is
used to predict the density and the colour of a 3D point
in space. These points are sampled along a set of rays
ℛ = 𝑟, one for each ground-truth pixel present in the
input image, extracted using standard camera geome-
try from the known camera poses. The predicted color
of each ray �̂�(𝑟) is obtained from a density-based light
propagation formulation:

�̂�(𝑟) =

Γ∑︁
𝑖=1

𝑠(𝑖)
(︁
1− 𝑒−�̂�(𝑟)𝑖𝛿𝑖

)︁
�̂�(𝑟)𝑖, (1)

where Γ indicates the number of points along the ray,
�̂�(𝑟)𝑖 is the color and �̂�(𝑟)𝑖 is the density predicted by
the network at 𝑖. 𝛿𝑖 = 𝑡𝑖+ 1−𝑡𝑖 is the distance between
adjacent sampled 3D spatial locations. 𝑠(𝑖) is the inverse
of the volume density that is accumulated up to the 𝑖𝑡ℎ

spatial location, which is computed as

𝑠(𝑖) = 𝑒−
∑︀𝑖−1

𝑗=1 �̂�(𝑟)𝑗𝛿𝑗 . (2)

The same formulation is used to predict the depth,
replacing the point colour �̂�(𝑟)𝑖 with the distance from
the start of the ray. The optimization loop minimizes the
difference between the colour predicted by the network
and the ground truth.

These solutions are typically trained with several im-
ages, for example, about a hundred images taken from
different and uniformly distributed camera viewpoints
around an object of interest [4]. When viewpoints are
not uniformly distributed or are a few (for example, four
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Figure 1: Block diagram of NeRF-based View Morphing (VM-NeRF). From the left, we (1) predict the depth with NeRF, (2)
rectify the input images and predicted depths, and (3) compute the image morphing of a view randomly positioned between
the view pair. 𝛼 determines the new view position and it is sampled from a Gaussian distribution.

or eight), the resulting NeRF model may fail to produce
satisfactory renderings [6, 7]. These solutions trained
on few or non-uniformly distributed viewpoints present
a higher likelihood of overfitting on these viewpoints,
namely, the few-shot view synthesis problem [6]. This
can also happen in professional environments where
production requirements limit placement and amount
of cameras. Few viewpoints solutions proposed so far
leverage training on multiple scenes or introduce opti-
mization constraints. Instead, we use a geometry-based
strategy (NeRF-VM) that enables NeRF to learn implicit
representations of scenes captured from few viewpoints.

2. Approach
Our approach, View Morphing NeRF (VM-NeRF), aims to
generate additional training views by interpolating the
image content of nearby ground-truth view pairs using
predicted depth.

View Morphing uses pixel correspondences between
images to create a smooth transition between two views
without prior knowledge of the scene [8]. The first step
of View Morphing is stereo-rectifying the two images to
make them coplanar. Then, a new image is created by
combining the two images using a pixel correspondence
map, which shows how pixels in one image correspond to
pixels in the other. This new image is positioned between
the pair’s images, and its viewpoint is on the line connect-
ing the cameras’ optical centres. In the original work, the
pixel correspondence map can be input manually or cre-
ated by keypoint detectors. Instead, our approach finds
pixel correspondences using network-predicted depth.
This lets NeRF train on known views before adding DVM-
generated views into the training process.

Our approach involves three operations that allow
the original View Morphing algorithm to be adapted for
NeRF camera configurations. Fig. 1 shows a graphical
representation of our method’s steps. These three steps
are: computing the depth, rectifying the images, and
morphing the images based on relative depths.

The depth is predicted by rendering the ground-truth
images with the learned volumetric function. The second
step is rectifying the two images and the depth obtained,
which makes them coplanar [9]. The last step involves
image morphing, which fuses rectified images to create
a new morphed image. This process is divided into three
steps: i) finding the pixel correspondences; ii) computing
the position of each pixel on the morphed camera; iii)
fusing pixels that fall in the same position. We find the
pixel correspondences by computing disparity maps as
functions of rectified estimated depths. The position
of each pixel on the morphed view is then computed,
but multiple pixels may end up at the same coordinates.
We resolve this issue with a GPU-optimized function
that removes duplicates by selecting the one nearest to
the image plane. The procedure can handle arbitrary
amounts of pixels falling in the same position.

View Morphing allows the synthesis of a new view at
any point on the line connecting the known cameras. We
randomly sample this point during training using a Gaus-
sian distribution centred halfway through the camera
pair. Specifically, let us consider a normalized distance
between the two cameras. The Gaussian distribution is
centred at 0.5, and the standard deviation𝜎 is chosen such
that 3𝜎 → 𝜖 at the optical centre positions. Therefore,
we sample from 𝒩 (0.5, 𝜎). We regenerate views during
training for each valid camera pair as the predicted depth
improves over time.



Ground Truth NeRF [4] AugNeRF [10] DietNeRF [6] RegNeRF [11] VM-NeRF
Chair 11.99 11.92 19.11 12.10 21.41

Mic 11.99 11.92 10.87 25.75 20.06

Lego 7.82 7.62 6.82 8.50

Figure 2: Comparisons on test-set views of scenes of NeRF realistic synthetic 360∘, trained on 4-views. Unlike other techniques
VM-NeRF help to increase the probability of building a consistent implicit representation with very sparse view. We report the
PSNR that we measured for each method and for each rendered image.
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Figure 3: The figure displays examples of renderings obtained using VM-NeRF. The top row is generated using eight views as
input, while the bottom row is generated using four views. Except for the hot dog and ship, VM-NeRF produces consistent
results even with four views. The artefacts derive from the network’s inability to establish coherence between the presented
views. Consequently, it overfits by assigning the pixel colour to a random point, which will then become visible from a different
viewpoint.

2.1. Results
We evaluate our method on three training setups using
the NeRF realistic synthetic 360°dataset [4], which com-
prises eight scenes: Chair, Drums, Ficus, Lego, Materials,
Ship, Mic, and Hot Dog. We select 𝑁 = 8 and 𝑁 = 4
views out of the 100 available for each scene using the
Farthest Point Sampling (FPS) [12] method (with the first
view used for FPS initialization in each scene). We test
each trained model on all the test views of the NeRF
realistic synthetic 360°dataset. We evaluate the render-
ing results using the Peak Signal-to-Noise Ratio (PSNR)
score, the Structured Similarity Index Measure (SSIM)

[13], and the Learned Perceptual Image Patch Similarity
(LPIPS) [14]. We compare our approach quantitatively
against DietNeRF [6] and RegNeRF [11], which are the
most recent methods for few-shot view synthesis, and
AugNeRF [10], which is to our knowledge the only data
augmentation method for NeRF.

We implement NeRF and our approach in PyTorch
Lightning and run experiments on a single Nvidia A40
with a batch size of 1024 rays. We can train a single scene
in about two days. We use the original implementations
of DietNeRF, AugNeRF, and RegNeRF to evaluate the
different setups.



Table 1
Results on the NeRF realistic synthetic 360∘ dataset.

# views Method PSNR ↑ SSIM ↑ LPIPS ↓

100 NeRF [4] 31.21 0.9513 0.0465

8

NeRF [4] 23.45 0.8673 0.1303
DietNeRF [6] 22.98 0.8545 0.1258
AugNeRF [10] 10.04 0.5415 0.3866
RegNeRF [11] 22.91 0.8667 0.1138
VM-NeRF (ours) 24.39 0.8768 0.1146

4

NeRF [4] 10.98 0.6550 0.3620
DietNeRF [6] 12.61 0.6591 0.3302
AugNeRF [10] 8.14 0.3924 0.4802
RegNeRF [11] 15.88 0.7932 0.1994
VM-NeRF (ours) 16.90 0.7563 0.2461

Quantitative. Table 1 shows the NeRF synthetic
360°results using 4 and 8 images per object. In the eight-
view setting, VM-NeRF outperforms all the other meth-
ods. Interestingly, the original version of NeRF performs
second best, followed by DietNeRF and RegNeRF. AugN-
eRF fails to produce satisfactory results. Although noisy,
we observed that VM-NeRF could effectively leverage the
depth information estimated during training, resulting
in higher quality results on average (24.14 vs 23.59).

In the four-view setup, we achieve an improvement of
+1.02 PSNR on average. The results also show that the
perturbation of the known input views, done by AugN-
eRF, has adverse effects in all the tested setups.
Qualitative. Fig. 2 shows some qualitative results on
Chair, Mic, and Lego, where we can observe that VM-
NeRF produces results with better details than DietNeRF.
Fig. 3 compares our method’s results with 8 and 4 views.

2.2. Conclusion
Few-viewpoint novel view synthesis is important because
it enables a faster generation of 3D assets in the case of
real-world applications, such as AR/VR. We presented
a novel method for NeRF based on the view morphing
technique [15] to tackle the problem of few-viewpoint
synthesis. View morphing requires no prior knowledge
of the 3D shape and is based on general principles of
projective geometry. We showed how to synthesise ran-
dom novel 3D projective transformations of the object
between viewpoint pairs using view morphing and how
to use them with NeRF. The results show that a geometric-
based strategy can outperform current methods in chal-
lenging scenarios.
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