





# Cybersecurity and AI: The PRAlab Research Experience

Maura Pintor, Giulia Orrú, Davide Maiorca, Ambra Demontis, Luca Demetrio, Gian Luca Marcialis, Battista Biggio and Fabio Roli

Ital-IA, Italy, May 29th, 2023

# **PRALab People / Research / Projects**

### Faculty members:

Battista Biggio Ambra Demontis Luca Didaci Giorgio Fumera Giorgio Giacinto Davide Maiorca Gian Luca Marcialis Giulia Orrù Maura Pintor Lorenzo Putzu Fabio Roli (Lab Director)

#### PhD students:

Daniele Angioni Sara Concas Simone Maurizio La Cava Srishti Gupta Emanuele Ledda Gianpaolo Perelli Giorgio Piras Alessandro Sanna

### **Post-doc:** Rita Delussu Angelo Sotgiu Marco Micheletto Roberto Casula

### Lab fellows:

Carlo Cuccu Doriano Edosini Andrea Panzino Biometrics Multimedia Analysis, Video Surveillance and Ambient Intelligence

**Research fields** 

AI Security and Safety

Cybersecurity

Brain and Medical Signal Processing

• 25+ research projects funded in 2012-2022

- 8 EU projects (2 coordinated by PRA Lab)
- 1.5 M€ EU funding
- More than 3M€ overall funding
- 400k€ yearly turnover

### Recent projects on AI Security

- HE Sec4Al4Sec 2023-2025
- HE ELSA 2022-2024
- PRIN 2017 RexLearn
- FFG Comet Module \$3AI



## **Pioneers of Machine Learning Security**

- Our team is internationally recognized among the pioneers of AI/ML security ٠
  - we have been the first to discover the impact of gradient-based attacks on ML models

Test data

- we have been the first to discover and systematize adversarial attacks on AI/ML, prior to their application to deep learning



#### Attacker's Goal Misclassifications that do Misclassifications that Querving strategies that reveal confidential information on the not compromise normal compromise normal system operation learning model or its users system operation Availability Privacy / Confidentiality Integrity Attacker's Capability Evasion (a.k.a. adversarial Sponge attacks Model extraction / stealing examples) Model inversion (hill climbing) Membership inference Training data Backdoor poisoning (to allow DoS poisoning (to subsequent intrusions) - e.g., maximize classification backdoors or neural trojans error)

B. Biggio and F. Roli, Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning, Pattern Recognition, 2018 - 2021 Best Paper Award and Pattern Recognition Medal



# Machine Learning for Cybersecurity







### Adversarial EXEmples: Practical Attacks on Machine Learning for Windows Malware Detection







# **Machine Learning Security Publication Highlights**

#### **Attacks on Machine Learning**

**ECML '13 / ICML '12, '15:** Pioneering work on gradient-based evasion and poisoning attacks

**USENIX Sec. '19:** Transferability of evasion and poisoning attacks

IEEE TDSC '19, IEEE TIFS/ACM TOPS '21: Adversarial perturbations on Android and Windows malware

**ECML '20:** Poisoning attacks on algorithmic fairness

NeurIPS '21: Fast minimum-norm attacks

NeurIPS '22: Indicators of attack failure

WACV '23: Phantom Sponges

**Robust Learning and Detection Mechanisms** 

**IEEE Symp. S&P '18:** Robust learning against training data poisoning

**IEEE TDSC '19:** Optimal/robust linear SVM against adversarial attacks (use case on Android malware)

**NEUCOM '21:** Fast adversarial example rejection

**IEEE TPAMI '21:** Learning with domain knowledge to improve robustness against adversarial examples







### **The PRALab Biometric Unit**

**Basic issues** Feature extraction Supervised learning Adaptive learning Deep learning Decision fusion Adversarial classification Explainable AI























# **Biometrics Publication Highlights**

#### Fingerprints

**IEEE TIFS '21:** Fingerprint recognition with embedded presentation attacks detection

**PR '22**: Towards realistic fingerprint presentation attacks

Handbook of Biometric Anti-Spoofing '23: Review of the Fingerprint Liveness Detection (LivDet) competition series

#### Deepfakes

**ICIP '22:** Tensor-Based Deepfake Detection In Scaled And Compressed Images.

**ICIAP '22:** Experimental Results on Multimodal Deepfake Detection

**Applied Sciences '22:** Analysis of Score-Level Fusion Rules for Deepfake Detection

#### **Other Biometrics**

**ICPR '21:** Detecting anomalies from video-sequences

**ICPR '22:** 3D Face Reconstruction for Forensic Recognition

**IET Biometrics '22:** EEG personal recognition based on 'qualified majority' over signal patches



# **Practical applications and tools**

- MLSec
  - SecML: assess security evaluation of AI/MML technologies
  - SecML Malware: ad-hoc extension for security evaluation of malware classifiers
- Biometrics
  - Fingerprint Forensic tool
  - Deepfake detection tool

| Panda      | 'Ision GUI Home Security Evaluation API |  |
|------------|-----------------------------------------|--|
| Sec        | urity Evaluation Configuration          |  |
| Model      |                                         |  |
| Choose     | file No file chosen                     |  |
| Data:      |                                         |  |
| Choose     | file No file chosen                     |  |
| • 0 no     | preprocessing                           |  |
| • 🔹 de     | fault preprocessing                     |  |
| • 0 cu     | stom                                    |  |
| Evalua     | tion mode:                              |  |
| • 🔹 Fa     | st                                      |  |
| • 0 Co     | mplete                                  |  |
| Pertur     | bation                                  |  |
| model      |                                         |  |
| L-infinity | ×                                       |  |
| 1/255,:    | 2/255, 4/255, 8/255, 16/255             |  |





### Challenges and Perspectives: towards MLSecOps

**improve** attacks for security testing design improved defenses with robustness guarantees **monitor** if a deployed model is under attack during operation



# **European Lighthouse on Secure and Safe AI (ELSA)**





http://pralab.diee.unica.it





### Open Course on MLSec https://github.com/unica-mlsec/mlsec

Software Tools <a href="https://github.com/pralab">https://github.com/pralab</a>

### **Machine Learning Security Seminars**

https://www.youtube.com/c/MLSec











# Thanks!





Maura Pintor maura.pintor@unica.it

Special thanks to Battista Biggio for sharing with me some of the material used in these slides.