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- Decreases the accuracy on natural data
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MAsk-Guided                           by Inverting a               
ff                                    [AAAI23]
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Joint work: Mozhdeh Rouhsedaghat (USC) Masoud Monajatipoor (UCLA) C.-C. Jay Kuo (USC)

Image Synthesis 
Quasi-Robust Classifier 



Method

13



Method

13



Method

13



Method

13



Method

13



Manipulation Control

14

“Quasi-robust”

Discriminator



Manipulation Control

14

“Quasi-robust”

Discriminator



Manipulation Control

14

“Quasi-robust”

Discriminator



Manipulation Control

14

“Quasi-robust”

Discriminator



Manipulation Control

14

“Quasi-robust”

Discriminator



Manipulation Control – Non-Rigid Scene Deformation

15



Manipulation Control – Non-Rigid Scene Deformation

15



Manipulation Control – Non-Rigid Scene Deformation

15



Manipulation Control – Copy/Move

16



Manipulation Control – Copy/Move

16

Remove



Manipulation Control – Copy/Move

16

Remove Add



Manipulation Control – Copy/Move

16

Remove Add



Qualitative Comparison

17



Qualitative Comparison

17



Qualitative Comparison

17



Qualitative Comparison

17



Qualitative Comparison

17



Qualitative Comparison

17



Future Work

18



Future Work

18

Better analyze  
High-Energy PGD 

Investigate same but 
for targeted attacks



Future Work

18

Better analyze  
High-Energy PGD 

Investigate same but 
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Generative-Discriminative  
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Thank you!


