

Exploring the Connection between **Robust** and **Generative** Models

github.com/senad96/Robust-Generative

Senad Beadini Computer Science Department Sapienza, University of Rome*

Iacopo Masi

Computer Science Department Sapienza, University of Rome

* Now at Eustema S.p.a.

Exploring the Connection between Robust and Generative Models

 $\{\mathbf{x}_i\}$

 $\{\mathbf{x}_i\} \sim p_{\text{data}}(\mathbf{x})$

 $\mathbf{x}' \sim p(\mathbf{x}; \boldsymbol{\theta}) \ \{\mathbf{x}_i\} \sim p_{\text{data}}(\mathbf{x})$

 $\mathbf{x}' \sim p(\mathbf{x}; \boldsymbol{\theta}) \ \{\mathbf{x}_i\} \sim p_{\text{data}}(\mathbf{x})$

$\mathbf{x}' \sim p(\mathbf{x}; \boldsymbol{\theta}) \ \{\mathbf{x}_i\} \sim p_{\text{data}}(\mathbf{x})$

$\mathbf{x}' \sim p(\mathbf{x}; \boldsymbol{\theta}) \ \{\mathbf{x}_i\} \sim p_{\text{data}}(\mathbf{x})$

 $\mathbf{x}' \sim p(\mathbf{x}; \boldsymbol{\theta}) \ \{\mathbf{x}_i\} \sim p_{\text{data}}(\mathbf{x})$

 $p(z|\mathbf{x})$

Inverting a discriminative, robust model

Robust Model $p(z|\mathbf{x})$

 $\boldsymbol{\delta}^{\star} = rg \max_{||\boldsymbol{\delta}||_{p} < \epsilon} \ell(\boldsymbol{\theta} (\mathbf{x} + \boldsymbol{\delta}), y)$

Robust Model $p(z|\mathbf{x})$

$$oldsymbol{ heta}^{\star} = rg\min_{oldsymbol{ heta}} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}^{\star}), yig)$$
 where
 $oldsymbol{\delta}^{\star} = rg\max_{||oldsymbol{\delta}||_p < \epsilon} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}), yig)$

Robust Model $p(z|\mathbf{x})$

θ X

"adversarial training"

$$oldsymbol{ heta}^{\star} = rg\min_{oldsymbol{ heta}} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}^{\star}), yig) \quad ext{where} \ oldsymbol{\delta}^{\star} = rg\max_{||oldsymbol{\delta}||_p < \epsilon} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}), yig)$$

Robust Model $p(z|\mathbf{x})$

θ

"adversarial training"

$$oldsymbol{ heta}^{\star} = rg\min_{oldsymbol{ heta}} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}^{\star}), yig) \quad ext{where} \ oldsymbol{\delta}^{\star} = rg\max_{||oldsymbol{\delta}||_p < \epsilon} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}), yig)$$

Decreases the accuracy on natural data

Robust Model $p(z|\mathbf{x})$

A \mathbf{Z}

"adversarial training"

$$oldsymbol{ heta}^{\star} = rg\min_{oldsymbol{ heta}} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}^{\star}), yig) \quad ext{where} \ oldsymbol{\delta}^{\star} = rg\max_{||oldsymbol{\delta}||_p < \epsilon} \ellig(oldsymbol{ heta}(\mathbf{x} + oldsymbol{\delta}), yig)$$

Decreases the accuracy on natural data

+ Develops "generative" behavior

 $abla_{\mathbf{x}}\ell_{\mathrm{CE}}(\mathbf{x},z;\boldsymbol{ heta})$

 $abla_{\mathbf{x}}\ell_{\mathrm{CE}}(\mathbf{x},z;\boldsymbol{ heta})$

Standard, non-robust

Wang et al. [4]

 $abla_{\mathbf{x}}\ell_{\mathrm{CE}}(\mathbf{x},z;\boldsymbol{ heta})$

Standard, non-robust

Wang et al. [4] $\ell_2, \epsilon = 0.01$

 $\nabla_{\mathbf{x}} \ell_{\mathrm{CE}}(\mathbf{x}, z; \boldsymbol{\theta})$

Standard, non-robust

"Robust" family

Wang et al. [4]

 $\ell_2, \epsilon = 0.01$

$\ell_2, \epsilon = 0.05$

Why Robust Models behave as Generative?

"energy-based model"

$$p_{\theta}(\mathbf{x}) = \frac{\exp\left(-E_{\theta}(\mathbf{x})\right)}{P_{\theta}}$$

Why Robust Models behave as Generative?

"energy-based model"

$$p_{\theta}(\mathbf{x}) = \frac{\exp\left(-E_{\theta}(\mathbf{x})\right)}{P_{\theta}}$$

Classifier

$$p(z = i | \mathbf{x}) = \frac{\exp F_{\theta}(x)[i]}{\sum_{i=1}^{K} \exp F_{\theta}(x)[i]}$$

Why Robust Models behave as Generative?

Joint energy: datum vs label

Why Robust Models behave as Generative?

Joint energy: datum vs label

Marginal: Energy of datum

Why Robust Models behave as Generative?

Joint energy: datum vs label

Marginal: Energy of datum

$$\ell_{\rm CE}(\mathbf{x}, z; \boldsymbol{\theta}) = E(\mathbf{x}, z; \boldsymbol{\theta}) - E(\mathbf{x}; \boldsymbol{\theta})$$

 $E_{\theta}(\mathbf{x}, z)$

 $E_{\theta}(\mathbf{x}, z)$

 $E_{\theta}(\mathbf{x}, z)$

 $E_{\theta}(\mathbf{x}, z)$ "adversarial training"

 $E_{\theta}(\mathbf{x}, z)$

Why Robust Models behave as Generatives?

 $E_{\theta}(\mathbf{x}, z)$

Finding 1: Untargeted attacks^{*} decrease $E_{\theta}(\mathbf{x})$ thus increase $p_{\theta}(\mathbf{x})$

* Untargeted attack = PGD (Projected Gradient Descent) attack

Finding 1: Untargeted attacks^{*} decrease $E_{\theta}(\mathbf{x})$ thus increase $p_{\theta}(\mathbf{x})$

In other words, untargeted attacks finds points with:

• High energy $E_{\theta}(\mathbf{x}, z)$ thus low $p_{\theta}(\mathbf{x}, z)$

Fool the classifier (known)

Finding 1: Untargeted attacks^{*} decrease $E_{\theta}(\mathbf{x})$ thus increase $p_{\theta}(\mathbf{x})$

In other words, untargeted attacks finds points with:

- High energy $E_{\theta}(\mathbf{x}, z)$ thus low $p_{\theta}(\mathbf{x}, z)$
- Low $E_{\theta}(\mathbf{x})$, highly likely for the model $p_{\theta}(\mathbf{x})$

Fool the classifier (known)

New adversarial points are more likely to exist than the natural data points! (less known)

Finding 1: Untargeted attacks^{*} decrease $E_{\theta}(\mathbf{x})$ thus increase $p_{\theta}(\mathbf{x})$

In other words, untargeted attacks finds points with:

- High energy $E_{\theta}(\mathbf{x}, z)$ thus low $p_{\theta}(\mathbf{x}, z)$
- Low $E_{\theta}(\mathbf{x})$, highly likely for the model $p_{\theta}(\mathbf{x})$

New adversarial points are more likely to exist than the natural data points! (less known)

Fool the classifier (known)

* Untargeted attack = PGD (Projected Gradient Descent) attack

Finding 2: $E_{\theta}(\mathbf{x})$ decreases as the attack "strength" increases

* attack strength= iterations in PGD

Finding 2: $E_{\theta}(\mathbf{x})$ decreases as the attack "strength" increases

^{*} attack strength= iterations in PGD

Finding 2: $E_{\theta}(\mathbf{x})$ decreases as the attack "strength" increases

* attack strength= iterations in PGD

10

10

10

Dataset	Defense	Attack	DR	FPR
imagenette	Energy	PGD (8)	98.24	1.37
[8]	(ResNet10)	PGD (16)	99.6	0.00

Dataset	Defense	Attack	DR	FPR
imagenette	Energy	PGD (8)	98.24	1.37
[8]	(ResNet10)	PGD (16)	99.6	0.00

Dataset	Defense	Attack	DR	FPR
imagenette	Energy	PGD (8)	98.24	1.37
[8]	(ResNet10)	PGD (16)	99.6	0.00
	Energy	PGD (8)	98.38	1.62
CIFAR- 10 [17]	(ResNet10)	APGD (8)	85.45	1.19
	KD+BU [9]	PGD (8)	92.27	0.96
	LID [21]	PGD (8)	94.39	1.81

Dataset	Defense	Attack	DR	FPR
imagenette	Energy	PGD (8)	98.24	1.37
[8]	(ResNet10)	PGD (16)	99.6	0.00
CIFAR- 10 [17]	Energy	PGD (8)	98.38	1.62
	(ResNet10)	APGD (8)	85.45	1.19
	KD+BU [9]	PGD (8)	92.27	0.96
	LID [21]	PGD (8)	94.39	1.81

Dataset	Defense	Attack	DR	FPR
imagenette	Energy	PGD (8)	98.24	1.37
[8]	(ResNet10)	PGD (16)	99.6	0.00
CIFAR- 10 [17]	Energy	PGD (8)	98.38	1.62
	(ResNet10)	APGD (8)	85.45	1.19
	KD+BU [9]	PGD (8)	92.27	0.96
	LID [21]	PGD (8)	94.39	1.81

Detector may suffer from: (1) targeted attacks (2) AutoAttack

10

Can we bypass the detector?

High-Energy PGD

$$\arg \max_{\boldsymbol{\delta}} \left[\mathcal{L} \big(\boldsymbol{\theta}(\mathbf{x} + \boldsymbol{\delta}), y \big) + \lambda E_{\boldsymbol{\theta}}(\mathbf{x} + \boldsymbol{\delta}) \right]$$

$$\mathbf{x}^* = \operatorname{clip}_{\epsilon} \left[\mathbf{x}^* + \alpha \operatorname{sign} \left[\nabla_{\mathbf{x}^*} \mathcal{L} (\boldsymbol{\theta}(\mathbf{x}^*), y) + \lambda E_{\boldsymbol{\theta}}(\mathbf{x}^*) \right] \right]$$

High-Energy PGD

$$\mathbf{x}^* = \operatorname{clip}_{\epsilon} \left[\mathbf{x}^* + \alpha \operatorname{sign} \left[\nabla_{\mathbf{x}^*} \mathcal{L} (\boldsymbol{\theta}(\mathbf{x}^*), y) + \lambda E_{\boldsymbol{\theta}}(\mathbf{x}^*) \right] \right]$$

#

0

-60

-40

E(x)

-20

0

$$\mathbf{x}^{*} = \operatorname{clip}_{\epsilon} \left[\mathbf{x}^{*} + \alpha \operatorname{sign} \left[\nabla_{\mathbf{x}^{*}} \mathcal{L} \left(\boldsymbol{\theta}(\mathbf{x}^{*}), y \right) + \lambda E_{\boldsymbol{\theta}}(\mathbf{x}^{*}) \right] \right]$$

Exploring the Connection between Robust and Generative Models

MAsk-Guided Image Synthesis by Inverting a Quasi-Robust Classifier [AAAI23]

Joint work: Mozhdeh Rouhsedaghat (USC)

Masoud Monajatipoor (UCLA)

Method

segment $\mathbf{x} \xrightarrow{} \mathbf{y}$

Method

Method

Method

Method

Manipulation Control – Copy/Move

16

Manipulation Control – Copy/Move

Add

Manipulation Control – Copy/Move

Qualitative Comparison

Qualitative Comparison

Qualitative Comparison

Input

DEEPSIM [5]

MAGIC (Ours)

a)

c)

b)

a)

b)

c)

Qualitative Comparison

d)

e)

Better analyze High-Energy PGD

Investigate same but for targeted attacks

Better analyze High-Energy PGD

Investigate same but for targeted attacks Investigate Hybrid Generative-Discriminative Models

Thank you!