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Abstract
We offer a study that connects robust discriminative classifiers trained with adversarial training (AT) with generative modeling
in the form of Energy-based Models (EBM). We do so by decomposing the loss of a discriminative classifier and showing that
the discriminative model is also aware of the input data density. Though a common assumption is that adversarial points
leave the manifold of the input data, our study finds out that, surprisingly, untargeted adversarial points in the input space
are very likely under the generative model hidden inside the discriminative classifier—have low energy in the EBM. We
present two evidence: untargeted attacks are even more likely than the natural data and their likelihood increases as the
attack strength increases. This allows us to easily detect them and craft a novel attack called High-Energy PGD that fools the
classifier yet has energy similar to the data set. The code is available at github.com/senad96/Robust-Generative
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1. Introduction
Although the attention to machine learning robustness
and its security implications became suddenly of interest,
the idea of robust of machine learning (ML) is not new.
Pioneering articles back in 2004 raised awareness that
the community naively assumed that the data genera-
tion process in data mining is independent of the system
responses [1]. A few years later, [2] provided the first
consolidated perspective of adversarial ML and the need
for a change in how ML is thought, conceived, and ap-
plied. Standard, non-robust ML has three limits in the
adversarial setting: (1) the first limitation is more proper
of the generalization ability of ML systems. These mod-
els operate under the assumption that the testing data is
sampled from the same unknown generation process that
created the data–i.i.d. assumption, independent and iden-
tically distributed. This is a too strict assumption when
actual input data can be sampled from another generation
process–o.o.d., out of distribution; (2) more importantly,
the generation process is assumed to be disconnected
from the system capabilities of taking decisions (3) mini-
mization of the empirical risk does not guarantee to be
resilient to an adversary. To address those issues, the
formalization of minimizing the maximum risk [3] by
A. Wald of 1944 came at hand to cast the empirical risk
minimization into adversarial risk minimization [4, 5],
following a proper definition.

In this paper, following the interpretation in [6] of a
discriminative classifier 𝑝𝜃(𝑦|x) implemented by a Con-
volutional Deep Neural Network (DNN) for multi-class
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Figure 1: An input point x on the left is mapped to a latent
code y to solve a generic task (i.e. classification). When we
invert the latent code y and we go back in the input space, we
have a full set of solutions. Adversarial examples are points
not in that set and also very close to x yet mapping to another
latent code, far from y: for small variations of the input, we
have large variations of the output. Adversarial training fixes
these points, making the model more “aware” of the distribu-
tion of the input data.

classification, we offer a new view on adversarial per-
turbations connecting them with generative modeling.
Following [6, 7], we analyze a robust model under the
lens of Energy-based Models (EBM), and we decompose
the cross-entropy loss of 𝑝𝜃(𝑦|x) to show that it contains
the notion of the joint distribution of the data and the la-
bels 𝑝𝜃(x, 𝑦) along with the distribution of the data itself
𝑝𝜃(x). Although adversarial perturbations are known
as input points that switch the decision boundary—thus
affecting 𝑝𝜃(𝑦|x)—we show that there is a strong depen-
dency also with 𝑝𝜃(x). In the scenario of untargeted
attacks, we show that an increase in the attack strength
implies a significant increase of 𝑝𝜃(x). The increase is
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so substantial that the attacks’ energy surpasses the mag-
nitude of the energy of natural data. Under the lens of
generative modeling via EBM, we hope to shed some light
on a few phenomena that emerge from robust classifiers,
such as: 1) robust models are naturally better calibrated
than standard classifiers, 2) robust models offer gradi-
ents of the loss wrt to the input with more structure, and
better “explain” the data 3) the trade-off between robust
and natural accuracy. Fig. 1 shows the idea of training
a robust model: in the standard case, when we train a
discriminative classifier, we model 𝑝𝜃(𝑦|x), and thus we
seek for a function 𝜃 that maps the fixed input point x
to a latent code y that is useful for the task, for instance,
minimize the cross-entropy loss. A discriminative model
ignores the input data distribution, thereby adjusting its
parameters to separate the data. Furthermore, the input
space is usually larger than the embedding space, and the
model has to build invariance to nuances of the training
data to achieve classification. What we do not enforce,
instead, is that the inverse of 𝜃 has to fall within a bound-
ary of the input data. In other words, when we train the
discriminative model, the function is not bijective, and
inverting the function gives as output a set. Adversarial
samples are points in the input space very close to x yet
map to a different latent code far from y. Adversarial
Training (AT) [4, 5] restores the “right” connection.

In this paper we make the following contributions:
◇ Viewing a discriminative model under the lens of an

EBM, we show that the more we increase the strength
of an untargeted attack, the more 𝑝𝜃(x) increases, even
more than the points naturally present in the dataset.

◇ We show that the energy of an input point x can be
used as a strong detector for adversarial data. The more
the attack increases its strength, the easier to detect. We
do so by performing no training of the detector except
choosing a threshold.

◇We offer a way to bypass the aforementioned detector
demonstrating that is possible to design an adversarial
perturbation that crosses the decision boundary yet its
energy is kept similar to those of natural data.

◇ Finally, we emphasize that a robust or quasi-robust
model can be effectively employed to enhance image
synthesis in generative AI, supported by a recent paper
by [8], where image synthesis is performed by inverting
a quasi-robust model.

2. Prior Work
Robust and Generative Models. We believe the first
connection between robust and generative models has
been done in the paper by Grathwoh et al. [6], where
for the first time, a discriminative DNN ending with the
softmax classifier is interpreted as an EBM. [6] proposes
JEM to train the DNN in a hybrid way—to be both dis-

criminative and generative. They also show that hybrid
training somehow slightly improves robustness to adver-
sarial attacks. JEM was extended in [9] to stabilize and
speed up the training. Later on, [7] established the first
connection on how adversarial training (AT) and EBM
bend the energy function in a different way yet using
a similar contrastive methodology. Very recently [10]
moved in the same direction of demystifying the gener-
ative capabilities of robust models developing a unified
probabilistic framework, and working also in unsuper-
vised settings. Finally, [11] showed that AT improves
Joint Energy-Based Generative Modelling, while incorpo-
rating into the modeling a sharpness-aware minimization
(SAM) procedure [12].
Synthesis with a robust model. At the best of our
knowledge [13] is the first paper to employ a robust clas-
sifier for synthesis since it is shown that robust models
attain input gradients that better correlated with “human
perception” [14, 15]. The community argued in [16] that
AT renders the discriminative model invertible, while
[17] believes that AT yields gradients closer to the image
manifold, which is in line with the connection between
robust and generative model. The generative capabilities
of robust models have been used by [18] for solving in-
verse problems and for controllable image synthesis [8].

3. Preliminaries
In Section 3.1, we will briefly review the settings of adver-
sarial attacks in a white box scenario, while Section 3.2
we examine data density modeling of the input data using
an Energy-based Model (EBM).

3.1. Adversarial Perturbations
A DNN 𝜃 : R𝑋 → R𝑌 is a universal approximator for
generic functions [19] that maps an input data x into
another meaningful code y using a loss function ℒ. In
machine vision, usually 𝑋 is high dimensional, with
𝑋 ≫ 𝑌 , and ℒ guides 𝜃 in solving the task at hand.
The definition of adversary specifies that, though 𝜃 may
perform well on the task yet 𝜃 is brittle since is possible
to obtain a slightly perturbed instance of x⋆ that fools
𝜃 on the same task such that x⋆ ≈ x. The gist of all the
attacks follows an inverse optimization process in which
the attacker optimizes an adversarial point x⋆ ∈ R𝑋

in the input space so that the model ascends the loss
in the output space (i.e. untargeted attack) or makes a
confident response of an erroneous label, decided a priori
by the attacker (i.e. targeted attack). The attacker often
yields a constraint on how much information needs to
be changed in the input. In most of the current attacks,
the bound on the information is implemented with pixel-
wise 𝐿𝑝 norm as 𝛿

.
= x⋆ − x and ||𝛿||𝑝 ≤ 𝜖. All the



attacks follow the above procedure with some differences
on how many steps are taken to ascend the loss: one for
Fast-Gradient Sign Method (FGSM) with its variants [4,
20], multi-steps with projections for Projected Gradient
Descent (PGD) [5] or in how the loss is designed, e.g.
Carlini & Wagner (CW) attack.

Attacks can be crafted in targeted or untargeted set-
tings even in the physical world [21] and can transfer
between different models. Whilst attack literature is solid,
defenses have several limitations [22]: despite being com-
putationally expensive, the only defense to withstand is
Adversarial Training (AT) [4, 5]. Though in this paper we
deal mainly with the image domain, adversarial pertur-
bations are known in other domains (Natural Language
Processing and tabular data) as counterfactual explana-
tions [23]. Below we briefly review the two main methods
to generate perturbations of the input given a DNN.
Fast Gradient Sign Method. FGSM [4] is a 𝐿∞-norm
adversarial attack and it is described in the following
formula below:

x* = x+ 𝜖 sign
(︁
∇x

[︀
ℒ(𝜃(x), 𝑦)

]︀ )︁
(1)

where sign returns the sign of its argument.
Projected Gradient Descent. PGD can be seen as an
iterative generalization of the FGSM algorithm [5]. The
iterative procedure is shown below:

x* = clip𝜖

(︁
x* + 𝛼 sign

(︁
∇x*ℒ(𝜃(x*), 𝑦)

)︁)︁
(2)

where clip denotes the function that projects its argu-
ment to the surface of x’s neighbor 𝜖-ball while 𝛼 is the
step size. This algorithm is able to produce strong adver-
sarial data that have a high probability to fool classifiers
and commonly is used as a benchmark. Additional vari-
ants of the PGD attack, such as APGD [24], are accessible
and can improve its reliability.

3.2. Energy-Based Model (EBM)
EBMs [25] are based on the idea that any probability den-
sity 𝑝𝜃(x) for x ∈ R𝑋 can be expressed via a Boltzmann
distribution as:

𝑝𝜃(x) =
exp (−𝐸𝜃(x))

𝑍(𝜃)
(3)

where 𝐸𝜃(x) is called energy, modeled as a neural net-
work, that maps each input x to a scalar. 𝑍(𝜃) is the
normalizing constant, known as the partition function,
such that 𝑝𝜃(x) is a valid probability density function;
the challenge for training EBMs is approximating the
constant 𝑍(𝜃). Training an EBM is performed via maxi-
mum likelihood estimation by minimizing the negative
log-likelihood of the data:

ℒ𝑀𝐿(𝜃) = Ex∼𝑃𝐷

[︁
− log 𝑝𝜃(x)

]︁
(4)

Nevertheless, the latter is not effortless and several
sampling methods have been designed to approximate it
efficiently [26]. Specifically, it is known that the deriva-
tive of Eq. (4) w.r.t 𝜃 is:

∇𝜃ℒ𝑀𝐿(𝜃) = Ex+∼𝑃𝐷

[︁
∇𝜃𝐸𝜃(x

+)
]︁
− Ex−∼𝑝𝜃

[︁
∇𝜃𝐸𝜃(x

−)
]︁

(5)
Unfortunately, for EBMs we can not sample from 𝑝𝜃 ,

therefore several MCMC methods have been proposed
to sample from that density function [26]. For instance,
in [6] Stochastic Gradient Langevin Dynamics (SGLD)
has been used to train EBMs using gradient knowledge.
SGLD sample with the following procedure:

x0 ∼ 𝑝0(x) , x𝑡+1 = x𝑡 −
𝛼

2

𝜕𝐸𝜃(x)

𝜕𝜃
+ 𝛼𝜖 (6)

where 𝑝0(x) is typically a Uniform distribution and
𝜖 ∼ 𝒩 (0, 1). Thus, we can summarize that the training
of EBMs consists of two steps: generating approximate
data samples from 𝑝𝜃 using MCMC methods and optimiz-
ing the model parameters to increase the energy of these
samples and decreasing the energy of the real samples
via gradient descent.
DNN as an EBM. Recently, Grathwohl et al. [6] made
a connection between DNN classifiers and EBMs. They
show that an EBM is hidden inside a standard classifier
and we can re-interpret the logits of a model 𝜃 to build
an EBM to compute 𝑝(x, 𝑦) and 𝑝(x):

𝑝𝜃(x, 𝑦) =
exp (𝜃(x) [𝑦])

𝑍(𝜃)
(7)

where 𝑍(𝜃) is the unknown normalizing constant,
𝜃(x)[𝑘] is the k-th index of logits 𝜃(x), and 𝐸𝜃(x, 𝑦) =
−𝜃(x)[𝑦] is the energy function. Following [6] we can
compute 𝑝𝜃(𝑦 |x) and 𝑝𝜃(x) as:

𝑝𝜃(𝑦|x) =
𝑝𝜃(x, 𝑦)

𝑝𝜃(x)
=

exp
(︀
− 𝐸𝜃(x, 𝑦)

)︀∑︀𝐾
𝑘=1 exp

(︀
𝜃(x)[𝑘]

)︀
𝑝𝜃(x) =

𝐾∑︁
𝑘=1

𝑝𝜃(x, 𝑦 = 𝑘) =

∑︀𝐾
𝑘=1 exp (𝜃(x)[𝑘])

𝑍(𝜃)

with 𝐾 the number of classes. Notice that, for any classi-
fier 𝜃, the energy of a data point x is:

𝐸𝜃(x) = − log

𝐾∑︁
𝑘=1

exp
(︀
𝜃(x)[𝑘]

)︀
(8)

Indeed a data point with a high probability of occurrence—
high 𝑝𝜃(x)—is equivalent to having low energy.

4. Method

4.1. Untargeted attacks have low 𝐸𝜃(x)

Analyzing the energy 𝐸𝜃(x) gives us the opportunity to
examine and study the generative model inside classifiers.
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Figure 2: (a) Energy distribution 𝐸𝜃(x) for PGD-based ad-
versarial and natural data on the test set of imagenette, given
a standard non-robust DNN. Notice how the distributions are
almost separated. (b) Each point indicates the mean absolute
value of the energy and its spread taken at different PGD
“steps” (increasing strength). Above each point we reported
the accuracy. indicates adv. while natural data.

To better understand the characteristics of adversarial
examples, we performed an energy analysis of DNNs
for both adversarial examples generated using the untar-
geted PGD attack and natural data. Our results indicate a
substantial difference in energy between adversarial and
natural data, with adversarial points having much lower
energy than natural points. These findings are exhibited
in Fig. 2, which displays the energy for two different
models on diverse datasets. In Fig. 2(a), the #steps (iter-
ations) used is 40 in PGD and 𝜖 is always 8/255. Indeed,
our analysis reveals an intriguing dependency between
the energy function 𝐸𝜃(x) and the “strength” of an un-
targeted adversarial attack. It appears that the energy of
adversarial data decreases as the strength of the attack
increases. In our case, we define the attack strength as
the discrete value of the number of steps of a PGD attack.
Considering these results and reinterpreting them using
the EBM framework, it can be inferred the following. Be-
yond the classic idea that adversarial attacks cross the
decision boundary, we show that a DNN tends to “be-
lieve” that adversarial data are highly likely under the
hidden generative model 𝑝𝜃(x). More surprisingly, they
are even more likely than the natural data itself.

4.2. Detecting Adversarial Noise with the
Energy Function

Based on the previous observations we propose the con-
struction of a very simple detection algorithm for catch-
ing adversarial data using the energy function as a 1D
discriminant. This idea has already been applied in [27]
to detect out-of-distribution (OOD) data; however, there
is a key difference from [27] and us: while the OOD data
tend to move to higher values of 𝐸𝜃(x), in our case, we
have the opposite; additionally, to the best of our knowl-
edge, this technique was not yet applied to adversarial

example detection. Our strategy detects PGD adversarial
perturbations at inference time in a DNN equipped with
a softmax classifier, without any additional computation
overhead and any additional parameters. Firstly, the ap-
proach estimates a threshold 𝑡 in the domain of 𝐸𝜃(x)
using a validation set that balances the true positive rate
(TPR) and false negative rate (FNR) based on a chosen
metric. Subsequently, it uses this threshold to perform
detection:

𝐺(𝜃,x) =

{︃
1 if − log

∑︀𝐾
𝑘=1 exp

(︀
𝜃(x)[𝑘]

)︀
≤ 𝑡

0 otherwise
(9)

4.3. Attacking The Energy Detector
The development of strong adversarial detectors is a sig-
nificant research area, as such detectors typically depend
on specific types of attacks. Although the energy ap-
proach is effective for identifying adversarial data with
low energy, such as those generated via PGD, a crucial
question is whether it is possible to generate perturba-
tions that can mislead the aforementioned method. That
means whether it is possible to produce adversarial ex-
amples that own energy comparable to natural data.
High-Energy PGD. In order to generate adversarial ex-
amples with similar energy as natural data, we propose to
introduce a regularization term during the optimization
step to force the creation of perturbations that lead to
adversarial data with higher energy. The regularizer will
remove the energy gap between natural and adversarial
data. Specifically, we define the following optimization
problem:

argmax
𝛿

[︁
ℒ
(︀
𝜃(x+ 𝛿), 𝑦

)︀
+ 𝜆 𝐸𝜃(x+ 𝛿)

]︁
(10)

where ℒ is the loss function, like cross-entropy and
𝜆 is a hyper-parameter that controls the strength of the
regularization. Eq. (11) describes the High-Energy PGD
attack (HE-PGD) implemented as:

x* = clip𝜖

[︁
x*+𝛼 sign

[︁
∇x*ℒ

(︀
𝜃(x*), 𝑦

)︀
+𝜆𝐸𝜃(x

*)
]︁]︁

(11)
where the initial x*

0 = x+ 𝛿 with 𝛿 ∼ Uniform(-𝜖, 𝜖).
The choice of 𝜆 is crucial and can significantly affect op-
timization and thus the aggressiveness of the attack. The
empirical value of the 𝜆 parameter is described in Sec-
tion 5.

5. Experimental Results
In this section, we describe our experiments and confirm
the efficacy of the energy function as a detection method
for PGD-based attacks. Then, we investigate a connection
between robust and generative models.



5.1. Detection Results
We use the imagenette [28], CIFAR-10 [29], and CIFAR-
100 [29] datasets as benchmarks. All attacks except HE-
PGD are implemented using torchattacks [30]. HE-PGD
is implemented directly in PyTorch with a 𝜆 parameter
of 1.2.
Evaluation Metrics. We measure the following metrics:
1) detection rate (DR); 2) false positive rate (FPR). We uti-
lize the G-mean metric to estimate the threshold; G-mean
is defined as the squared root of the product of sensitivity
and specificity. Table 1 shows the detector’s performance
on diverse attack settings. Energy as a detector achieves
larger DR for PGD-based perturbations on CIFAR-10, also
scale to imagenette [28] where the input space is much
larger than CIFAR, and works for unseen attacks such as
APGD [24].

Dataset Defense Attack DR FPR
imagenette
[28]

Energy
(ResNet10)

PGD (8) 98.24 1.37
PGD (16) 99.6 0.00

CIFAR-
10 [29]

Energy
(ResNet10)

PGD (8) 98.38 1.62
APGD (8) 85.45 1.19

KD+BU[31] PGD (8) 92.27 0.96
LID [32] PGD (8) 94.39 1.81

Table 1
Attack detection with energy function. KD+BU and LID results
taken from [33]. All numbers are percentages. Attacks are
expressed with the (𝜖) budget.

5.2. HE-PGD Results
Our experiments in Fig. 3 show that HE-PGD is at least
as effective as conventional PGD while it keeps the en-
ergy of the adversarial points similar to the natural data.
Indeed in Fig. 3(a) the two distributions now largely over-
lap since the adversarial samples generated by HE-PGD
have higher energy than those produced by PGD and are
better aligned with the energy of the natural data. Con-
sequently, when the value of 𝜆 is chosen appropriately,
HE-PGD can bypass the energy-based detector, presented
in Section 4.2. The stepsize of all attacks is fixed at 1/255.

From Fig. 3(b), we note that, unlike before, 𝐸𝜃(x) is
approximately invariant to the number of steps (#steps)
in projected gradient descent. At the same time, the
classifier accuracy still drops to zero for higher iterations
yet it does so slightly more gradually than before.

5.3. Synthesis with a Robust Model
The evidence that robust models have input gradients
aligned with semantic properties of the object, as shown
in Fig. 4, can be explained under the lens of generative
modeling. Aggregating gradients of the loss over the
input can be seen as a way to sample points from the
generative model hidden inside the discriminative clas-
sifier. What AT may be doing is rendering it a hybrid
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Figure 3: (a) On imagenette, energy distribution for HE-
PGD adversarial and natural data. The two distributions are
overlapped, which makes the energy detector worthless. (b)
HE-PGD enforces invariance of 𝐸𝜃(x) wrt to the #steps yet
still pushes the accuracy to 0% after a few steps. indicates
adv. while natural data.

Input Non-robust,
discriminative

Quasi-robust: discriminative trained with AT
with very small perturbation 𝜖 of the input

ℓ2 , 𝜖=0.01 ℓ2 , 𝜖=0.05 ℓ∞ , 𝜖= 0.5
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Figure 4: A regular discriminative model shows gradients
of the loss respect to the input with sparse activations com-
pared to robust models while these latter are more meaningful
which better motivate them for synthesis and connect them
to generative models.

model that becomes generative by estimating gradients
of the data distribution as a score-matching model [34].
There is also a strong parallelism between adversarial
attacks and sampling from score-matching using SGLD—
Eq. (6). Recently [8] showed that is possible to invert a
quasi-robust model to perform convincing image synthe-
sis. A quasi-robust model is a model which is non-robust
from the point of view of security yet it inherits genera-
tive capabilities and keeps its well-performing accuracy.
To generate the samples, [8] takes steps in the direction
of the gradients that better carries information of class
conditional data distribution 𝑝(x|𝑦).

6. Conclusions
In this paper, by viewing a robust discriminative model
as an EBM, we were able to detect adversarial example
effectively and demonstrate that there is the possibility of
bypassing the detector introducing a new attacked called
High-Energy PGD. We believe that exploring the connec-
tion between robust and generative modeling may shed
some light on interesting properties of robust classifiers.
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