Available as: Zoppi, T., Ceccarelli, A., Puccetti, T., & Bondavalli, A. (2023). Which Algorithm can Detect Unknown Attacks? Comparison of Supervised, Unsupervised and Meta-Learning Algorithms for Intrusion Detection. Computers & Security, 103107.

Which Algorithm can Detect Unknown Attacks?

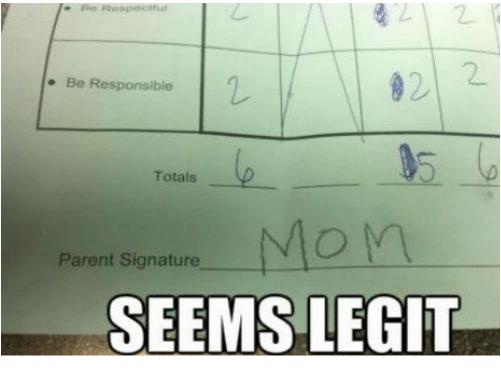
Comparison of Supervised, Unsupervised and Meta-Learning Algorithms for Intrusion Detection

Tommaso Zoppi, Andrea Ceccarelli, Tommaso Puccetti, Andrea Bondavalli RCL Group – University of Florence – Italy <u>e-mail: tommaso.zoppi@unifi.it</u>

Traditional Intrusion Detectors

- Typical means to attain security mainly revolve around two main approaches:
 - Rule-based, Invariant-Based or
 - Signature-based

Images from https://blogs.vmware.com/security/2016/11/next-generation-antivirus-ngav.html



RESILIENT COMPUTING LAB

Signature-based Detection

- Network or host activity is analyzed to seek for matching attack patterns (signatures).
 - If the current behavior of the system matches one or more attack signatures (or rules), an alert is raised

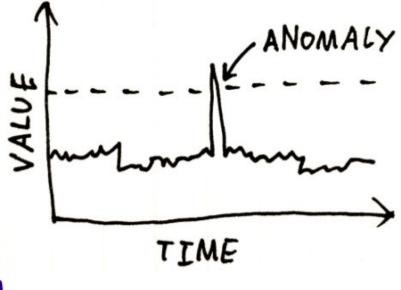
Ital-IA Pisa – Tommaso Zoppi

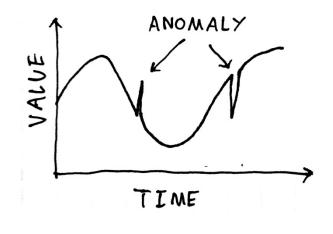
What about Unknown Threats?

ENT COMPUTING LAB

- Research and Practice found ways to defend against specific attacks
 - Mostly rule, signature-based or using supervised learning

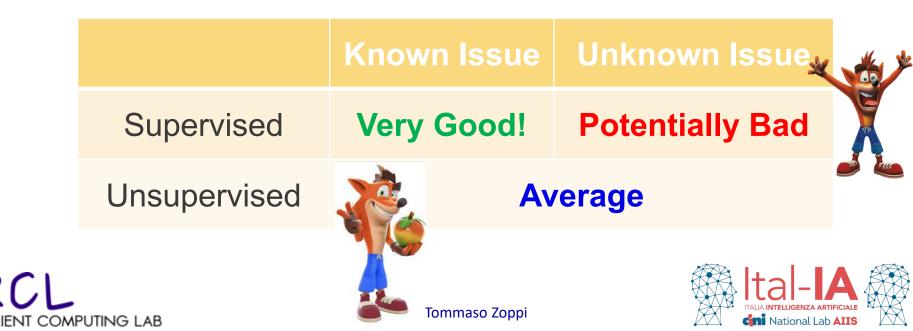
- But what about unknown attacks or errors?
 - Unknown attacks: no rule / signature available yet





Anomaly-based Detection

- It allows to identify patterns in data streams and operations which are different from those expected, and label them as anomalies
 - They do not need signatures of anomalies
 - Instead, they characterize what is normal and act accordingly

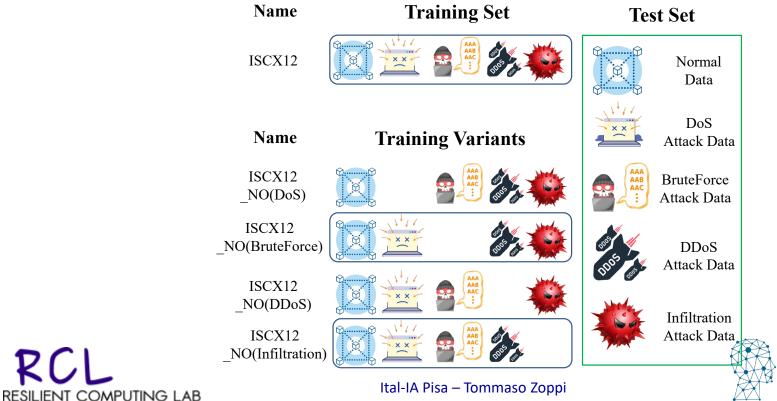


(Un)Supervised Algorithms

- ML Algorithms are usually partitioned as (semi)supervised and unsupervised, depending on their need of labels in the training data
- Supervised Algorithms very well known
- Unsupervised Algorithms
 - Do not assume any detailed knowledge of anomalous events

(Un)Supervised Algorithms

► ML Algorithms usually partitioned are as (semi)supe ding on their need SR - Supervised - Unsupervise Do not ass is events SUe Sup ad quantify Unsu



Evaluation Plan

How to evaluate detection of unknowns?

- Unknown attack: not in the training set but in the test set
- Therefore we created variants of each dataset
 - where a given attack is unknown

📫 National Lab AIIS

Metrics For Benchmarking

Accuracy / F-Measure (F1)

Example: System where 95% of data is normal

- "Optimistic silly detector": always outputs "normal"
- TP = 0, TN = 95%, FP = 0, FN= 5%
- Accuracy = 95%

- Accuracy / F-Measure (F1)
- Matthews Coefficient (MCC)
 - A bit complex, but fits also unbalanced datasets

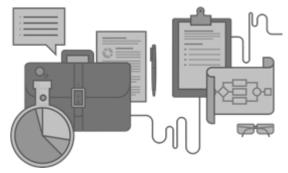
 $\mathrm{MCC} = rac{TP imes TN - FP imes FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

- Example: System where 95% of data is normal
 - "Optimistic silly detector": always outputs "normal"
 - TP = 0, TN = 95%, FP = 0, FN= 5%
 - Accuracy = 95%

NT COMPUTING LAB

- MCC = 0 (random guessing)

 \mathcal{N}



- Accuracy / F-Measure (F1)
- Matthews Coefficient (MCC)
 - A bit complex, but fits also unbalanced datasets

 $ext{MCC} = rac{TP imes TN - FP imes FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

- Recall (or Coverage)
- Recall-Unknown

- Recall, but considering only zero-day attacks

ML Algorithms to be Benchmarked

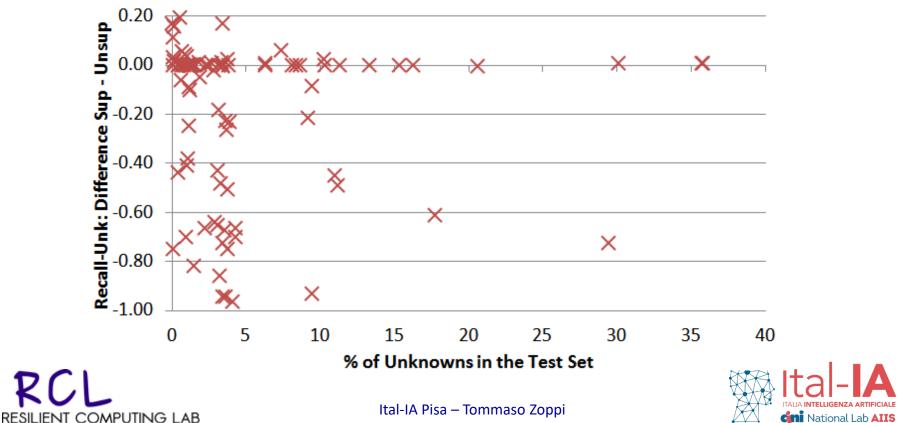
Supervised

- Tree-based: Decision Tree, ADABoost, Gradient Boosting, XGBoost, Random Forests
- Statistical: Naïve Bayes, LDA, Logistic Regression
- Others: kNN, SVM, MLP
- Supervised Deep learning
 - FastAI, AutoGluon, TabNet, Custom PyTorch
- Unsupervised
 - Clustering: K-Means, G-Means, LDCOF
 - Distance: ODIN, COF, LOF, SDO, FastABOD
 - Others: iForest, HBOS, One-Class SVM, SOM

Evaluation of Supervised Algs. (I)

Best MCC scores of supervised algorithms

- With respect to best unsupervised classifiers
- Huge difference w.r.t. Unsupervised


Dataset	Supervised Deep Learning	Supervised (Non-Deep)	Unsupervised	Difference Sup - Unsup
ADFANet	0.9943	0.9983	0.9837	0.0146
AndMal	0.3895	0.6458	0.5503	0.0955
CICIDS17	0.9954	0.9996	0.6511	0.3485
CICIDS18	0.9286	0.9281	0.8277	0.1009
CIDDS	0.9924	0.9754	0.8026	0.1898
IoT_IDS	0.9965	0.9998	0.9739	0.0259
ISCX	0.8763	0.8927	0.7921	0.1006
NSLKDD	0.9830	0.9888	0.8384	0.1504
SDN20	0.9994	0.9998	0.8818	0.118
UGR	0.9426	0.9272	0.8161	0.1265
UNSW	0.8904	0.9369	0.8849	0.052
				Ital-

RESILIENT COMPUTING LAB

Ital-IA Pisa – Tommaso Zoppi

- Now, let's look at Recall-Unk
- Supervised against unsupervised classifiers
- Negative value in the plot means that unsupervised classifiers outperform supervised in detecting unknowns

- Overall, Supervised > Unsupervised
 - Except for Recall-Unk (detection of zero-days)

BUT BUT BUT

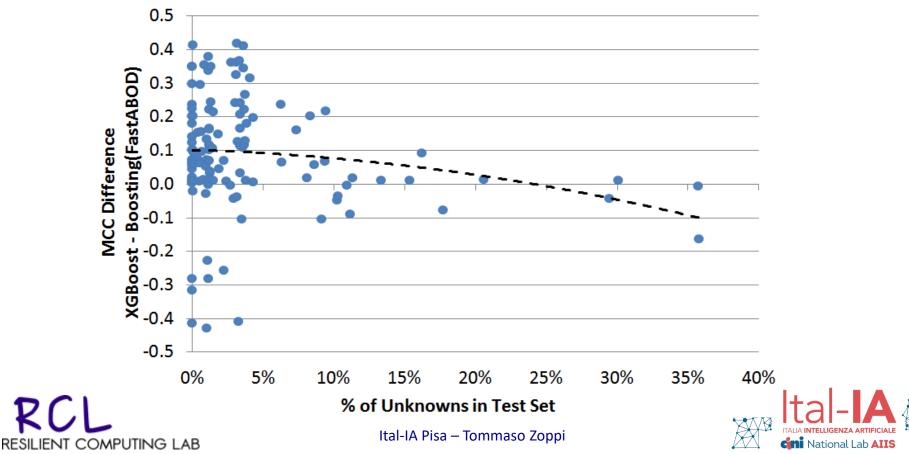
- Top-Performing Supervised Algorithms use complex learning strategies (meta-learning)
 - Random Forests -> Bagging
 - XGBoost -> (extreme) gradient boosting

why shouldnt we apply those to unsupervised algorithms?

Unsupervised Meta-Learning

As such, we built bagging and boosting ensembles of unsupervised algorithms

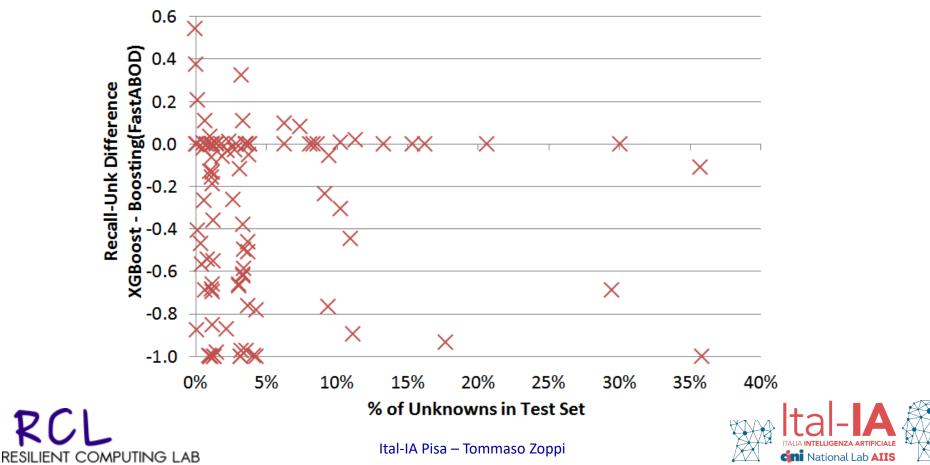
		Improvement w		
Dataset	Regular	Bagging	Boosting	Boosting
ADFANet	0.9837	0.9867	0.9916	0.0079
AndMal	0.5503	0.4290	0.5277	-0.0226
CICIDS17	0.6511	0.6706	0.8981	0.247
CICIDS18	0.8277	0.8369	0.8460	0.0183
CIDDS	0.8026	0.8234	0.9734	0.1708
IoT_IDS	0.9739	0.9902	0.9896	0.0157
ISCX	0.7921	0.8447	0.8202	0.0281
NSLKDD	0.8384	0.8925	0.9101	0.0717
SDN20	0.8818	0.9441	0.9481	0.0663
UGR	0.8161	0.8445	0.8745	0.0584
UNSW	0.8849	0.8457	0.8927	0.0078



Compare w XGB - MCC

Scores of XGB (sup) vs FastABOD (w boosting) MCC of XGP decays the mana unknowns happen

- MCC of XGB decays the more unknowns happen
- Up to a point in which Unsup > Sup



VS – Recall-Unk Comparison

Also, Recall-Unk of FastABOD is far better than those of XGBoost

- And this gets more evident the more zero-days appear

Takeovers

- There is no "silver bullet" algorithm to plug into a system for excellent intrusion detection capabilities
- Deep Learning algorithms do not really fit the analysis of tabular data coming from network monitoring
 - XGBoost > Deep Learners (FastAI, TabNet, Autogluon ...)
- XGBoost (sup) shows good overall detection capabilities
- Applying meta-learning dramatically reduces misclassifications of unsupervised algorithms
 - Up to a point in which FastABOD > XGBoost
 - But only if we expect zero-days to happen very frequently!

Q&A Time

Paper available as: Zoppi, T., Ceccarelli, A., Puccetti, T., & Bondavalli, A. (2023). Which Algorithm can Detect Unknown Attacks? Comparison of Supervised, Unsupervised and Meta-Learning Algorithms for Intrusion Detection. Computers & Security, 103107.

