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Abstract
This short paper reports about a line of research exploiting a conditional logic of commonsense reasoning to provide a
semantic interpretation to neural network models. A “concept-wise" multi-preferential semantics for conditionals is exploited
to build a preferential interpretation of a trained neural network starting from its input-output behavior. The approach is
a general one; it has been first proposed for Self-Organising Maps (SOMs), and then exploited for MultiLayer Perceptrons
(MLPs). In fact, a MLP can be regarded as a (fuzzy) conditional knowledge base (KB), in which the synaptic connections
correspond to weighted conditionals.

Reasoning for entailment and model-checking in many-valued weighted conditional KBs is based on computational logic
(Datalog and Answer Set solving) and it is used in the verification of properties of a trained network and describing what the
network has learned.
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1. Introduction

In this short paper we report about our approach to ex-
ploit a logic of common sense reasoning for the explain-
ability of some neural network models. We also report
about some experiments in the verification of properties
of feedforward neural networks by model checking and
entailment.

Preferential approaches to common sense reasoning
(e.g., [1]) have their roots in conditional logics [2, 3], and
have been more recently extended to Description Logics
(DLs), to deal with defeasible reasoning in ontologies, by
allowing non-strict form of inclusions, called defeasible
or typicality inclusions.

Different preferential semantics [4, 5, 6, 7] and closure
constructions (e.g., [8, 9, 10]) have been proposed for
defeasible DLs. Among these, the concept-wise multi-
preferential semantics [11], which allows to account for
preferences with respect to different concepts. It has
been introduced first as a semantics of ranked knowledge
bases in a lightweight description logic (DL) and then for
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weighted conditional DL knowledge bases, and proposed
as a semantics for some neural network models [12, 13].

We have considered both an unsupervised model, Self-
organising maps (SOMs) [14], which is considered a psy-
chologically and biologically plausible neural network
model, and a supervised one, MultiLayer Perceptrons
(MLPs) [15]. Learning algorithms in the two cases are
quite different but our aim was to capture in a semantic
interpretation the behavior of the network after training.
Considering a domain of input stimuli presented to a net-
work e.g., during training or generalization), a semantic
interpretation describing the input-output behavior of the
network can be provided as a multi-preferential interpre-
tation, where preferences are associated to concepts. For
SOMs, the learned categories C1, . . . , Cn are regarded
as concepts so that a preference relation over the domain
of input stimuli is associated with each category [13]. For
MLPs, each unit of interest in the deep network (includ-
ing hidden units) can be associated with a concept and
with a preference relation on the domain [12].

For MLPs, the relationship between the logic of com-
monsense reasoning and deep neural networks is even
stronger, as the network can itself be regarded as a condi-
tional knowledge base, i.e., as a set weighted conditionals.
This has been achieved by developing a concept-wise
fuzzy multi-preferential semantics for DLs with weighted
defeasible inclusions. Different preferential closure con-
structions have been considered for weighted knowl-
edge bases (the coherent [12], faithful [16] and φ-coherent
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[17] multi-preferential semantics), and their relationships
with MLPs have been investigated (see [12, 17]). Unde-
cidability results for fuzzy DLs with general inclusion
axioms [18, 19] have motivated the investigation of the
(finitely) many-valued case. An approach based on An-
swer Set Programming (ASP) has been proposed for rea-
soning with weighted conditional KBs under φ-coherent
entailment [20]; the complexity of the entailment prob-
lem has been studied as well as ASP encodings allowing
a solver to deal with KBs corresponding to neural net-
works with hundreds of nodes and search spaces up to
1080 [21]. Datalog with weakly stratified negation has
been used for developing a model-checking approach
for MLPs in the many-valued case [22]. Both the en-
tailment and the model-checking approaches have been
experimented in the verification of properties of trained
multilayer feedforward networks.

The strong relationships between neural networks and
conditional logics of commonsense reasoning suggest
that conditional logics can be used for the verification of
properties of neural networks to explain their behavior,
in the direction of a trustworthy and explainable AI [23,
24, 25]. The possibility of combining learned knowledge
with elicited knowledge in the same formalism is also a
step towards neuro-symbolic integration.

2. The concept-wise multi-preferential
semantics

The idea underlying the multi-preferential semantics is
that, for two domain elements x and y and two concepts,
e.g., Horse and Zebra , x can be regarded as being more
typical than y as a horse (x <Horse y ), while x could be
less typical than y as a zebra (y <Zebra x ).

This idea has been exploited in the definition
of concept-wise multi-preferential interpretations [11]
for a description logic with typicality concepts (e.g.,
T(Horse), representing the class of typical horses), and
defeasible inclusions (e.g., T(Horse) ⊑ Tall, meaning
that “normally horses are tall"). Typicality inclusions
T(C) ⊑ D correspond to KLM conditionals C |∼ D [1].

Concept-wise multi-preferential interpretations are de-
fined by adding to standard DL interpretations (which
are pairs I = ⟨∆, ·I⟩, where ∆ is a domain, and ·I an
interpretation function) the preference relations <C1

, . . . , <Cn associated with a set of distinguished con-
cepts C1, . . . , Cn, representing the relative typicality of
domain individuals with respect to these concepts. Each
preference relation <Ci is a modular and well-founded
strict partial order on ∆ (as preferences in KLM rational
models). Preferences with respect to different concepts
do not need to agree, as we have seen.

The preference relations are used to define the mean-
ing of typicality concepts. In the two-valued case, a global

preference relation < can be defined from the <Ci ’s, and
concept T(C) is interpreted as the set of all <-minimal
C elements. In the fuzzy case [12], the preference rela-
tion <C of a concept C is induced by the fuzzy inter-
pretation CI of the concept, a function mapping each
domain element in ∆ to a value in [0, 1], that is x <C y
iff CI(x) > CI(y).

3. A preferential interpretation of
Self-Organising Maps

Once a SOM has learned to categorize, the result of
the categorization can be seen as a concept-wise multi-
preferential interpretation over a domain of input stimuli,
in which a preference relation is associated with each
concept (learned category). Once the SOM has learned to
categorize, to assess category generalization, Gliozzi and
Plunkett [26] define the map’s disposition to consider
a new stimulus y as a member of a known category C
as a function of the distance of y from the map’s repre-
sentation of C . The distance d(x,Ci) of a stimulus x
from a category Ci can be used to build a binary prefer-
ence relation <Ci among the stimuli in ∆ with respect
to category Ci [13], by letting x <Ci y if and only if
d(x,Ci) > d(y, Ci) (x is more typical than y with re-
spect to category Ci if its distance from category Ci is
lower than the relative distance of y). Based on the as-
sumption that the abstraction process in the SOM is able
to identify the most typical exemplars for a given cate-
gory, in the semantic representation of a category, some
specific stimuli (corresponding to the best matching units)
are identified as the typical exemplars of the category.

The notion of generalization degree introduced by
Gliozzi and Plunkett [26] can be used to define a fuzzy
multi-preferential interpretation of SOMs This is done by
interpreting each category (concept) as a function map-
ping each input stimulus to a value in [0, 1], based on the
map’s generalization degree of category membership to
the stimulus [26].

In both the two-valued and fuzzy case, the preferential
model can be exploited to learn or validate conditional
knowledge from empirical data, by verifying conditional
formulas over the preferential interpretation constructed
from the SOM. In both cases, model checking can be
used for the verification of inclusions (either defeasible
inclusions or fuzzy inclusion axioms) over the respective
models of the SOM (for instance, do the most typical pen-
guins belong to the category Bird with at least a degree of
membership 0.8?). Starting from the fuzzy interpretation
of the SOM, a probabilistic interpretation of this neural
network model is also provided [13], based on Zadeh’s
probability of fuzzy events [27].



Table 1
Results for checking formulae on the test set

4. A preferential interpretation of
MultiLayer Perceptrons

The input-output behaviour of MLPs can be captured in
a similar way as for SOMs by constructing a preferential
interpretation over a domain ∆ of input stimuli, e.g.,
those stimuli considered during training or generalization
[12]. Each neuron k of interest for property verification
can be associated to a distinguished concept Ck . For
each concept Ck , a preference relation <Ck is defined
over the domain ∆ based on the activity values, yk(v),
of neuron k for each input v ∈ ∆. In this way, a fuzzy
multi-preferential interpretation of the network can be
constructed over the domain ∆.

In a fuzzy multi-preferential interpretation, the acti-
vation value yk(x) of neuron k for a stimulus x in the
network (assumed to be in the interval [0, 1]) is taken to
be the degree of membership of x in concept Ck . The
interpretation of boolean concepts is defined by fuzzy
combination functions, as usual in fuzzy DLs [28, 29].
This also allows a preference relation <C to be associ-
ated to any concept C , and the typical C-elements to be
identified, provided the interpretation is well-founded
(an assumption which clearly holds when the domain
∆ is finite, as in this case). Let us call Mf,∆

N the fuzzy
multi-preferential interpretation built from network N
over a domain ∆. Logical properties of the network (in-
cluding fuzzy typicality inclusions) can then be verified
by model checking over such an interpretation. Evaluat-
ing properties involving hidden units might be as well of
interest.

A Datalog-based approach has been developed [22],
which builds a multi-valued preferential interpreta-
tion Mf,∆

N ,n of a trained feedforward network N and,
then, verifies the properties of the network for post-
hoc explanation. A multi-valued truth space Cn =
{0, 1

n
, . . . , n−1

n
, n
n
} is considered, for some n ≥ 1.

The model checking approach has been experimented
in the verification of properties of neural networks for
the recognition of basic emotions using the Facial Ac-
tion Coding System (FACS) [30], which involves Action
Units (AUs), i.e., facial muscle contractions. From the
RAF-DB [31] data set, we selected the subset of the im-

ages that were labelled using only one emotion in the
set {suprise, fear, happiness, anger}. A processed
dataset containing 5 975 images was input to OpenFace
2.0; the output intensities of AUs were rescaled in order
to make their distribution conformant to the expected
one in case AUs were recognized by humans [30]. The
resulting AUs were used as input to a neural network
trained to classify its input as an instance of the four
emotions. The neural network model we used is a fully
connected feed forward neural network with three hid-
den layers having 1 800, 1 200, and 600 nodes (all hidden
layers use RELU activation functions, while the softmax
function is used in the output layer).

The relations between such AUs and emotions, studied
by psychologists [32], have been used as a reference for
formulae to be verified on neural networks trained to
learn such relations. The model checking approach was
applied, using the Clingo ASP solver as Datalog engine,
taking as set of input stimuli ∆ the test set, containing
1194 images, and n = 5 (given that AU intensities, when
assigned by humans, are on a scale of five values). Table
1 reports some results for the verification of typicality in-
clusions T(E) ⊑ F ≥ k/n, with the number of typical
individuals for the emotion E, the number of counterex-
amples for different values of k (form 1 to n), as well
as the value of the conditional probabilities p(F |T(E))
of concept F given concept T(E), based on Zadeh’s
probability of fuzzy events [27].

5. MultiLayer Perceptrons as Weighted
conditional knowledge bases

The fuzzy multi-preferential interpretation Mf,∆
N , built

from a multilayer perceptron N for a given set of input
stimuli (a domain ∆) as described above, can be proven to
be a model of the network N in a logical sense, by map-
ping the network into a weighted conditional knowledge
base KN [12].

The weighted conditional knowledge base KN con-
tains, for each neuron k, a set of weighted defeasible
inclusions. If Ck is the concept name associated to unit
k and Cj1 , . . . , Cjm are the concept names associated to



Figure 1: MLPs as knowledge bases

units j1, . . . , jm, whose output signals are the input sig-
nals for unit k, with synaptic weights wk,j1 , . . . , wk,jm ,
then unit k cab be associated a set TCk of weighted
typicality inclusions: T(Ck) ⊑ Cj1 with wk,j1 , . . . ,
T(Ck) ⊑ Cjm with wk,jm (see figure 1). The fuzzy
multipreference interpretation built from a network N
over a domain ∆ can be proven to be a model of the
knowledge base KN based on a fuzzy multipreferential
semantics, and specifically based on the notions of co-
herent [12], faithful [16] and φ-coherent [17, 33] (fuzzy)
multi-preferential semantics.

In general a weighted conditional KB KN [12], besides
a set of weighted conditional inclusions, also contains a
TBox and an ABox as in standard (and in fuzzy) descrip-
tion logics. Multipreferential semantics for weighted con-
ditional KBs have been defined through a semantic clo-
sure construction in the spirit of Lehmann’s lexicographic
closure [34] and Kern-Isberner’s c-representations [35],
but adopting a concept-wise approach, so that different
preference relations are defined.

Specifically, a coherent multi-preferential model of a
weighted KB is defined as a fuzzy interpretation I =
⟨∆, ·I⟩, which satisfies all DL axioms in TBox and ABox,
as well as a coherence condition which requires that
each preference relation <Ci , induced from the fuzzy
interpretation over the domain ∆, is coherent with the
the weights Wi(x) of all domain individuals x with re-
spect to concept Ci. For each distinguished concept
Ci, and domain element x ∈ ∆, the weight Wi(x) of
x wrt Ci in a fuzzy interpretation I = ⟨∆, ·I⟩ is the sum:
Wi(x) =

∑︁
h wi

h DI
i,h(x).

In the φ-coherence semantics a function φ : R → [0, 1]
is considered (or, more generally, a function φi for each
distinguished concept Ci). An interpretation I = ⟨∆, ·I⟩
is φ-coherent if, for all concepts Ci ∈ C and x ∈ ∆,

CI
i (x) = φ(

∑︂
h

wi
h DI

i,h(x))

where TCi = {(T(Ci) ⊑ Di,h, w
i
h)} is the set of

weighted conditionals for Ci.

If φ is the activation function of a MLP, the activa-
tion of neurons for an input vector coincides with the
interpretation.

Once a trained neural network can be seen as a
weighted defeasible KB KN , φ-entailment can then be
used to prove properties of the network for post-hoc
explanation.

The model-checking approach does not require to con-
sider the activity of all units, but only of the units in-
volved in the property to be verified; and it only con-
siders a set of input stimuli. Entailment is more chal-
lenging from the computational point of view, since all
units are considered as well as the space of possible in-
put values. Also in this case, a multi-valued truth space
Cn = {0, 1

n
, . . . , n−1

n
, n
n
} is considered, with the ap-

proximation φn of φ to the closest value in Cn.
The entailment problem has been shown to be

PNP[log]-complete [21]. However, encodings in Answer
Set Programming have been developed allowing a solver
to deal with KBs corresponding to neural networks with
hundreds of nodes and search spaces up to 1080 (80 input
nodes with 10 discrete values) [21].

Some experiments have been done based on finitely
many-valued Gödel description logic with typicality
GnLCT [20]. As a proof of concept, in [20] the entail-
ment approach has been experimented for the weighted
GnLCT KBs corresponding to two of the trained mul-
tilayer feedforward network for the MONK’s problems
([36]). The approach has also been used for the emo-
tion recognition domain described in section 4, using a
smaller network for binary classification of happiness.
Using boolean inputs and 10 discrete values for other
nodes, the formula

T(happiness) ⊑ au6 ⊔ au12 ≥ 1

has been found to have 4 counterexamples out of the 1446
instances of T(happiness) among the 217 combinations
of boolean inputs. Such 4 combinations do not occur in
the data set.

Such cases are interesting as far as trustworthiness is
concerned. In cases a formula is expected to hold, we
might be satisfied with some exception in the space of
input tuples considered for entailment, in a case like the
one above, where the exceptional tuples are not repre-
sented in the data set. This makes sense in case the data
set is a good sample of the real world (as it should be),
and the cost of non-compliance with the formula is ac-
ceptable. The entailment approach naturally allows for
adding constraints on inputs, to exclude part of the input
space from the analysis. In other contexts we might be
interested in stronger guarantees on previously unseen
inputs.



6. Conclusions

Conditional logics of commonsense reasoning can be
used for interpreting and verifying the knowledge
learned by a neural network for post-hoc explanation
and, for MLPs, a trained network can itself be seen as
a conditional knowledge base. We see this as a contri-
bution in the direction of a trustworthy and explainable
AI [23, 24, 25]. In fact, properties (about input and out-
put concepts) that are found to hold provide a partial
description of what the network has learned, i.e., parts of
a global explanation [24], where typicality is used to de-
scribe properties of cases that are recognized as “strong”
members of a class.

Much work has been devoted to the combination of
neural networks and symbolic reasoning (e.g., the work
by d’Avila Garcez et al. [37, 38, 39] and Setzu et al. [40]),
as well as to the definition of new computational models
[41, 42, 43, 44]. The work summarized in this paper opens
to the possibility of adopting conditional logics as a basis
for neuro-symbolic integration, e.g., learning the weights
of a conditional knowledge base from empirical data,
and combining, for inference, the defeasible inclusions
extracted from a neural network with other defeasible or
strict inclusions.
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