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Abstract
As of today, limited transparency concerning the quality characteristics of components manufactured at suppliers’ sites results
in costs and inefficiencies for focal firms. This paper analyses a possible scenario in which digital twins of each produced
component are created and the potential of Artificial intelligence (AI) is leveraged for predictive inspections. Here a possible
use-case is presented, where the assembly cost between stator units and a designed cooling jacket is predicted in real-time via
an inverse FEM-based Deep Learning framework to provide a possible evaluation criterion for the inspection, allowing to
detect pairing fails at early stages and leading to potential savings.
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1. Introduction
Quality control is a critical function in manufacturing
industries to ensure that the final products meet the re-
quired quality standards. It involves a systematic process
of monitoring, testing, and verifying the quality of raw
materials, production processes, and finished products
to identify defects and prevent their occurrence. Fur-
thermore, accurately estimating quality characteristics
can facilitate transparent data-sharing between suppliers
and customers, mitigating potential drawbacks such as
customer dissatisfaction, complaints, and pseudo-scraps.
One of the most common methods of quality control in
manufacturing industries is inspection, which involves
visually examining the final product to identify any de-
fects or deviations from the required quality standards.
Inspection can be performed manually or using auto-
mated systems, and it is essential to ensure that the final
product meets the required quality standards. However,
inspection has limitations in detecting hidden defects
and doesn’t provide a direct evaluation of the final func-
tionality of the product.
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The objective of this paper is to propose a solution
to achieve an exhaustive data-sharing with digital twins
of product units while providing functional inspections
to predict mechanical behaviours in real-time, leverag-
ing AI methods such as FEM-based Deep Learning (DL)
approaches.
A digital twin is a virtual representation of a phys-

ical system that mutually exchanges information with
it [1]. The representation of the digital twin is strictly
related to the application, and in the context of quality
control, it must contain all the necessary information
for the inspection, relying on measurements gathered
by real sensors. Furthermore, the digital twin is updated
many times along the production line to comprise mea-
surements and production parameters at different phases,
allowing for potential inference on quality characteris-
tics.
On the other hand, FEM-based Deep Learning ap-

proaches are data-drivenmethods that allow to efficiently
perform Finite Element Analysis in real-time by train-
ing Deep Neural Networks (DNNs). The neural networks
will undergo training using a dataset generated with FEM
simulations, in which each sample is related to a spe-
cific experiment on a pre-defined task where input data
represents the applied boundary conditions and output
data constitute the resulting outcome. The deep learning
model is trained to exhibit the capability of predicting
simulation outcomes for unexplored experiments, i.e.,
generalizing beyond the training set of the dataset. Once
the model has been trained, it could be exploited to make
real-time predictions in inference, contributing to the
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evaluation of quality inspection.

2. Related works
One popular class of FEM-based Deep Learning ap-
proaches relies on Physics Informed Neural Networks
(PINNs) [2],[3],[4], that include both the data and the
assumed governing Partial Differential Equations (PDEs)
during training. This approach confers a potential ad-
vantage in that a reduced volume of data may suffice
for the purposes of training, an attribute of considerable
significance for numerous data-driven applications. It is
worth noting that despite the lack of explicit imposition
of physics during the training phase (non-PINN scenario),
it remains possible to recover said physics in the trained
model through implicit adherence to an extensive cor-
pus of training data. For example, [5] trained different
regression models with FEM data to predict the deforma-
tion of the human soft tissue, [6] proposed a data-driven
method based on a U-Net architecture that approximates
the non-linear relation between a contact force and the
displacement field computed by an FEM algorithm, [7] de-
veloped a Bayesian multiscale CNN framework to predict
local stress fields in structures with microscale features.
[8] provides a probabilistic U-Net framework that is able
to capture all the uncertainties present in the data and
the model.

3. Use-case
Here a possible use-case of predictive quality inspection
in the context of e-motor mounting is presented. The aim
is to inspect stator units and determine their compatibil-
ity for assembly with a designed cooling jacket, detecting
stators that would lead to pairing fails and predicting
optimal heating patterns to apply on the cooling jacket
to achieve the assembly.
The assembly process involves expanding the cool-

ing jacket via heat treatment and consequently inserting
the stator inside. This means that the cooling jacket
should be thermally expanded according to the shape
of the stator to fit the insertion, and the heat treatment
has to be predicted to check feasibility and find the op-
timal heat pattern to minimize the energy cost. To this
end, we could directly predict the assembly cost in terms
of energy needed to pair the two components in real-
time, relying on the geometry estimation of the stator
coming from its associated digital twin and exploiting
an FEM-based Deep Learning model trained on the de-
signed cooling jacket. Thus, the DL model will learn
an approximated function that maps the displacement
and the temperature distribution on the cooling jacket
that characterise the thermal expansion. Furthermore,
by just swapping inputs with labels we can easily learn

Figure 1: Resulting temperature (a) and magnitude of dis-
placement (b) distribution on the cooling jacket coming from
a single FEM simulation assuming local heating patterns.

the inverse function, namely the one that maps a dis-
placement field with the temperature distribution that
causes it. This implication will associate the simulation
with the class of inverse FEM problems. Making some
assumptions on the heating treatment that could depend
also on physical hardware, we can restrict the domain
of all possible boundary conditions that can be applied,
generating a distribution from which to sample dataset
instances. Just to give visual feedback, figure 1 reports a
qualitative result of an FEM experiment computing the
temperature and the displacement distribution assuming
a localized heat pattern. A Deep Learning model like the
one proposed by A. Mendizabal et al. [6] can be used
for the purpose of this application, adapting the task to
the thermo-mechanical case. As the geometry of the
cooling jacket yields in the three-dimensional space, to
tackle the inefficiency coming from the 3D convolutions
of the U-Net, the input could be also represented as a
graph, extrapolating the volumetric mesh of the cooling
jacket already used for the FEM simulation. This could
simply involve replacing the U-Net architecture with its
counterpart designed to handle graphs: the Graph U-Net
proposed by H. Gao and S. Ji [9].

4. Conclusion
This essay has investigated the potential of leveraging
AI to make advanced inspections for quality control. A
possible scenario forecasts an exhaustive data-sharing
between customers and suppliers about quality charac-
teristics of product units in the context of the manufac-
turing industry, leading to potential savings coming from
pseudo-scraps detections at early stages. As a use case,
an inverse FEM-based Deep Learning model has been hy-
pothesized to predict assembly feasibility between cool-
ing jackets and stators for the production of e-motors,
saving costs associated with inefficient assembly proce-
dures and potential pairing failures.
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