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Abstract
Decentralizing part of specialist evaluations, some diagnostic procedures and some care activities becomes necessary for
allowing citiziens to access healthcare services in decentralized cities as much as possible, and guarantee all citizens equal
access to healthcare services. This contribution describes our research inside the Proximity Care Project, which aims at
developing expert or artificial intelligence-based systems that support the correct identification of subjects at risk of pathology
development. The activities here presented the design of (1) a predictive model for assisted diagnosis of pathologies from
the analysis of electronic medical records; (2) ultrasound fetoscopy image analysis algorithms for automating the image
acquisition of ultrasound fetal head standard planes and supporting the diagnosis. These findings could facilitate personalized
therapy planning by predicting diseases risk from electronic medical records and also allows us to move toward model
interpretability of image algorithms by looking at the discriminative elements in the ultrasound image.
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1. Introduction
The Proximity Care project (https://www.santan-
napisa.it/en/health-science/proximity-care) proposes to
implement a series of technological solutions that fit into
a pathway involving multi-professional teams (general
practitioners, specialists, community nurses, third sector
operators, ...) and the patient.

The Health Profile of the Valle del Serchio district area
for the year 2020 shows that the prevalence of chronic-
ities is higher than the regional average. In particular,
with regard to heart failure as visible in Fig. 1, the Valle
del Serchio district zone is the one in Tuscany with the
highest prevalence, for ischaemic heart disease it is in sec-
ond place, while the prevalences for stroke and Chronic
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Obstructive Pulmonary Disease (COPD) are in the re-
gional range. Hospitalisation rates in both males and
females are generally higher than the average for the
Azienda USL Toscana nord ovest. Additionally, although
the downward trend in mortality in Tuscany has been
consolidated for many years, the standardised mortality
rate for males resident in the Serchio Valley was the worst
in all of Tuscany and increased between 2013 and 2016.
Looking at the provision of visits, a gap emerges between
first visits and control visits: this gap is particularly ev-
ident for cardiology visits. When comparing the crude
rates of provision of first visits and cardiology check-ups
in 2020, it emerges that first visits are in line with the
rates of the other district areas, while for check-ups there
is a sharp decrease.

In order to allow all citizens an equal access to health-
care services, it becomes mandatory to decentralise part
of the specialist evaluations, some diagnostic procedures
and some care activities. This need emerged in a pressing
manner during the pandemic, even in the geographical
areas of Tuscany with the easiest access to healthcare
services.
Our main role in the project is to develop artificial

intelligence algorithms for the analysis of clinical data
collected in dispersed locations in order to support the
work of general practitioners andmedical specialists. The
work involves two main activities:
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Figure 1: Tuscany heart failure cronic patiets in 2020

1. Analysis of data extracted from electronicmedical
records for the screening of diseases affecting
the general population (e.g. cardiomyopathies,
diabetes, etc.)

2. Analysis of ultrasound images to automate the
image acquisition procedure (possibly by means
of a robotic platform) and support screening ac-
tivities

For the image analysis, the potential of a class of ML
algorithms called deep-learning (DL) was investigated.
To date, DL represents the state of the art for the analysis
of ultrasound images. While waiting to collect a local
dataset, datasets of ultrasound images available online
were used.

2. Predictive models for
amyloidosis screenig from EHR
analysis

Amyloidosis (AM) is a group of diseases caused by abnor-
mal protein folding that leads to the formation of insolu-
ble fibrils in tissues and organs [1]. Its prognosis is poor,
with cardiac death being the most common outcome [2].
In the US, there are 1275 to 3200 new cases per year, with
an annual incidence ranging from 9.7 to 14.0 cases per
million person-years. The total annual healthcare costs
for patients range from 92, 513 to 114, 030 [3]. EHRs are
an essential part of the clinical data generated worldwide,
but the diagnosis of amyloidosis is often delayed [4].
This study aimed to develop an algorithm to screen

patients’ health status automatically by using EHR data

and ML. The objectives were to identify patients with
AM using clinically important information obtained from
EHR and to foster model interpretability by analyzing
the importance of risk factors. A case-control study was
conducted to analyze the risk factors that determined
the development of AM. For this purpose, before the
predictive algorithms can be developed, it is necessary
to apply Natural Language Processing (NLP) methods
in order to be able to represent the unstructured text
noted down by medical staff in the EHR in such a way
that it can be processed by the machine-learning (ML)
algorithms. So, the first step was the collection of clinical
datasets in order to train the NLP algorithms and thus
structure all the fields of the EHR.
Data from 418 patients with cardiac conditions were

analyzed, recorded between 2010 and 2022 in Italy. Of
these, 205 had AM and 213 had non-amyloid heart fail-
ure (HC). The study looked at 12 risk factors identified
in previous research [5, 6, 7]. Missing values were re-
placed with null values and duplicates were removed. All
participants gave informed consent and the study was
conducted in accordance with ethical guidelines.
The study compared three supervised learning algo-

rithms (Random Forest, Support Vector Machine, and
XgBoost) to classify in Hc or AM group. These classi-
fiers were chosen for their interpretability, accuracy, and
low computation effort [8]. Random forests combine
the predictions of several decision trees, each trained
independently [9]. SVMs are commonly used when data
is not linearly separable, mapping features to a higher-
dimensional space using kernel functions [10, 11]. Xg-
Boost is a tree-based boosting algorithm that optimizes



Table 1
Median (1° quartile, 3° quartile) of precision (P), recall (R) and
f1-score (f1) obtained with the three classifiers

RF SVM XGB
P 0.72 (0.68, 0.75) 0.64 (0.57, 0.68) 0.72 (0,69, 0.77)
R 0.76 (0.57, 0.81) 0.61 (0.54, 0.69) 0.78 (0.75, 0.80)
f1 0.73 (0.71, 0.75) 0.61 (0.58, 0.68) 0.74 (0.72, 0.77)
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Figure 2: Confusion matrix obtained with the best RF.

new trees for every iteration, resulting in fewer false
alarms and accurate classification [12]. Each algorithm
was optimized with various hyper-parameters.

Hyperparameter tuning was performed for each classi-
fier using a grid search to find the best parameters. Strat-
ified 10-fold cross-validation was used to evaluate perfor-
mance, and accuracy, precision, recall, and F1-measure
were compared. The set of tested hyperparameters is
reported.

1. RF: The number of trees in the forest,
n_estimations :[50, 60, 70, 80, 100, 150, 200,
250, 300, 350, 400, 450, 500, 550, 600], the maxi-
mum depth of the tree, max_depth :[3,4,5,6,7].

2. SVM: C :[1, 10, 100, 1000], kernel :[’linear’];
C :[1, 10, 100, 1000], kernel :[’rbf’], gamma :[0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]; C :[1,
10, 100, 1000], kernel :[’poly’], degree :[2,3,4],
gamma :[0.01,0.02,0.03,0.04,0.05]

3. XGB: max_depth : range(2, 10, 1), n_estimations :
range(60, 220, 40), learning_rate :
[0.1, 0.01, 0.05]

Table 1, as well as Fig. 2 and Fig. 3, present the clas-
sification performance and confusion matrices obtained
using the three algorithms.
This study aimed to evaluate three machine learning

classifiers to identify the presence of amyloidosis using
data from electronic health records. The Random For-
est (RF) classifier had the highest median and lower in-
terquartile range and provided insights on the importance
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Figure 3: Feature importance of RF.

of predictors for identifying amyloidosis. So, RF was iden-
tified as the best classifier, as indicated by its superior
classification performance in Table 1, in accordance with
other studies like [13]. To further investigate RF’s per-
formance, its feature importance were examinated. The
analysis revealed that the top five most important fea-
tures, in descending order, were EF, NYHA, DY, DB, and
HY. These results are presented in Fig. 3 and are consis-
tent with previous literature [14]. EF was highlighted as a
quantitative and objective parameter in prognostic mod-
els as in [15], while NYHA was significantly associated
with the disease in patients with AL amyloidosis [16].
Dyslipidemia and diabetes are potential predictors that
need further research. A cohort of patients with amyloi-
dosis and diabetes had worse outcomes than those with
atrial fibrillation, according to the study in [17].
In conclusion, this study presented an automatic

method for identifying patients at risk of AM using elec-
tronic medical records. Different classifiers were com-
pared, and RF had the best performance. Feature impor-
tance results were consistent with major risk factors iden-
tified in literature, providing additional medical insights.
These findings could facilitate personalized therapy plan-
ning by predicting amyloidosis risk from electronic med-
ical records.

3. Medical image analysis for
supporting clinicians

Due to its portability, low-cost and non-invasive nature,
physicians and radiologists extensively use ultrasound
(US) imaging for screening and diagnosis. However, US
acquisition also presents unique challenges, such as low
imaging quality caused by noise and artifacts, high depen-
dence on operator experience, and high inter- and intra-
variability across different patients and manufacturers’
US systems [18]. Moreover, to the extent of achieving bet-
ter reproducibility of biometric assessments [19], inter-
national organizations such as the International Society
for Ultrasounds in Obstetrics and Gynaecology (ISUOG)
and the American Society of Echocardiography Interna-
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Figure 4: Workflow of proposed approach to exploit CAM in
the generation of FHSP US images.

tional Alliance Partner provided worldwide guidelines
for US standard plane acquisition in the related medical
field [20, 21].
Thanks to their ability to tackle the challenges in US

imaging, DL algorithms are used to support the analysis
of the US acquisition [22], and to assist healthcare opera-
tors in the standard planes identification [19]. Nonethe-
less, two paramount issues arise when exploiting the
DL algorithms in medical treatments: i) the outcomes
of the model are referred to as black-boxes due to a lack
of understanding of the decision-making process [23],
and ii) the need for large annotated datasets to train DL
algorithms is still perceived by the US-image analysis
community as a major bottleneck to the development of
robust algorithms [19]. Therefore, we propose a novel
approach that aims to overcome these issues both in
terms of model interpretability and model performance.
In particular, our approach is based on two main steps:

1. Internal network representation: the visualiza-
tion of the most discriminative elements (saliency
or class activation maps) of the US image with the
aim to understand the decision-making process
of the model;

2. Imaging generation: synthesizing realistic US im-
ages exploiting the internal network representa-
tion to enlarge the training dataset.

We applied the proposed approach in the evalua-
tion of fetal’s growth during gestational screening. Ob-
taining fetal head standard planes (FHSPs) is of funda-
mental importance to visualize cerebral structures and
diagnose neural anomalies during the mid-semesters
of gestation. With the aim to improve the quality of
these US acquisitions, we apply the proposed approach
to the identification of the three common FHSPs: the
trans-ventricular (TV), trans-thalamic (TT), and trans-
cerebellar (TC) planes [24].

Fig. 4 illustrates the proposed approach to exploit the
saliency maps as prior in the generation of synthetic im-
ages. Firstly, to obtain class activation cams (CAMs) [25]
from FHSPs images, VGG16 [26] was used to classify TV,

Table 2
Precision, recall, and f1-score for FHSPs classifications on the
test set released in [24]

precision recall f1-score number of images
TC 0.86 0.86 0.86 339
TT 0.86 0.76 0.81 765
TV 0.66 0.84 0.74 302

TT, and TC planes. CAMs were then computed as:

𝐶𝐴𝑀 𝑐 =
𝐾
∑
𝑘=1

𝑤 𝑐
𝑘𝐴

𝑘 (1)

where 𝐴𝑘 is the (14, 14) k-th feature of the last convo-
lutional layer of VGG16 and 𝑤 𝑐

𝑘 is the k-th weight corre-
sponding to class 𝑐, with 𝑐 = {TV,TT,TC}, and the total
number of features 𝐾 = 512. Once generated, the CAMs
were successively used as the condition for conditional
generative adversarial network (cGAN) to control the
appearance of the generated samples. We selected the
pix2pix cGAN [27] architecture, a cGAN that has been
explored mainly in the clinical literature showing promis-
ing results [28]. Briefly, in conditional generative models
the generator and the discriminator are trained to fool
each other, in particular, the generator is forced to syn-
thesize realistic images and the discriminator to identify
as real the outcome of the generator.

The performances of the classification are reported in
Table 2. VGG16 identifies better the TC and TT planes
than the TV ones. To compare the results with the lit-
erature, we computed also the mean average accuracy,
which is equal to 82.1 ± 5.2 %, in line with the human
accuracy reported in [24].
Then, the CAMs are obtained by equation (1). As

reported in Fig. 5, through CAM we can identify the dis-
criminative element of each FHSP, namely the atrium for
the TV (top left image), the thalamus for the TT (to right
image), and the cerebellum for the TC (bottom image).
Notably, with this approach, we can understand where
the model looking at to make its prediction.

Finally, Fig. 6 shows some of the synthetic images (bot-
tom row of each panel) generated from the saliency maps
(top row of each panel). Two qualitative observations
arise by comparing the synthetic images with the original
ones (middle row of each panel). First, the position of
the fetal head is not centered in the images, but shows
variability across images according to the CAM. Second,
the region surrounding the head contains details that
remind real FHSPs images. Overall, the proposed model
allows generating images that are similar to the outcome
of the US-imaging acquisition. Although our results are
promising, a limitation of this work is the demanding



Figure 5: Class activation maps of FHSP: (top left image) TV,
(top right image) TT, and (bottom image) TC.

Figure 6: Generated images: (top panel) TV, (middle panel)
TT, and (bottom panel) TC. The synthetic images (bottom
row of the panels) are generated from the CAMs (top row of
the panels) and compared with the real ones (middle row of
the panels). Each panel contain 6 samples, arranged in row,
correctly identified during classification.

generation of some characteristic landmarks, especially
for TT. Precisely, these issues may derive from the weak
ability of the proposed model to correctly identify this
class, and the lack of details in training samples.

In conclusion, we want to underline that the proposed
approach allows us to move toward model interpretabil-
ity of the DL algorithm medical application by looking at
the discriminative elements in the US image. Moreover,
we are confident that exploiting CAMs to generate FH-
SPs using raw US images will be a valid augmentation
tool to improve the performance of FHSPs classification
problems in case of reduced datasets.

4. Conclusion
In this paper, we presented our preliminary results on
our artificial intelligence-based systems inside the Prox-
imity Care Project. They aim to assist in the screening
of amyloidosis from the analysis of EHR and generate
realistic FHSP ultrasound images in a real medical sce-
nario. Despite the prominent results, using ML and DL
algorithms limitations such as the paucity of the datasets
and the interpretability of the models.
Future work will expand our dataset, conduct auto-

matic feature selection, and use longitudinal data to de-
velop ML tools for predicting the risk of amyloidosis
for personalized therapies. Additionally, the develop-
ment of NLP techniques using medical records from the
Fondazione Toscana Gabriele Monastiero is in progress
to create predictive algorithms for detecting amyloido-
sis. The study involves two steps: structuring medical
records and applying predictive models to find correla-
tions between patients’ symptoms. The research will be
extended to the medical records of general practitioners
in the Garfagnana area. In the field of US medical imag-
ing analysis, the effort to improve model interpretability
must be a central role besides the performance of DL
algorithms. In this regard, our approach shows that the
class activations mapping represents a powerful tool to
move forward model interpretability. Moreover, we ex-
ploit the CAM to synthesize new images to enlarge the
dataset to further improve the performance of the DL
model both in terms of accuracy and computational time.
Therefore, the future step is to deploy our FHSPs classi-
fication model into an ultrasound probe. The goal is to
return in real-time the outcomes of the model to assist
the healthcare operator during the US image acquisition
of standard planes.
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