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Abstract
Environmental perception is a crucial aspect within the field of autonomous urban driving that provides information about
the environment, identifying clear driving areas and possible surrounding obstacles. Semantic segmentation is a widely used
perception method for self-driving cars. The predicted image pixels can be used to bias the vehicle’s behaviour and avoid
collisions. In this work a Semantic Segmentation model based on an architecture called SegFormer is proposed, made more
efficient by using what our Skip-Decoder module. The model is fine-tuned on urban driving datasets and produces accurate
segmentation masks in a short time, making the architecture perfectly adaptable to an autonomous driving car system.
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1. Introduction
The autonomous driving cars need to be equipped with
the necessary perception to understand the nearby
situation so that they can safely integrate into our
existing roads and have enough information about
the environment, clear driving areas and possible
surrounding obstacles. One of the many sensor involved
in autonomous driving is usually a camera, which allows
the system to process the rich visual signal information
using, for example, semantic segmentation, that allows
the system to recognize possible obstacles and avoid
collisions. This work proposes an accurate real-time
semantic segmentation model for self-driving cars based
on SegFormer [1], a Transformer-based architecture
with a lightweight decoder and an efficient multi-head
attention. This method guarantees a fast inference time
and good performances. The model is fine-tuned and
tested using urban driving datasets such as Cityscapes
[2] or ApolloScape [3], showing the capability of
SegFormer to be easily adaptable to downstream tasks.
The proposed architecture is a variation of the original
SegFormer implementation, which uses a so called
Skip-Decoder which simulates the U-Net “expanding
path” and expands the hidden states using different local
size information at each iteration.

By using the term “autonomous driving” in this paper,
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we are referring to all the different levels and possible
automation systems with different percentages of human
control 1. Deductions will follow regarding the level of
autonomous driving to which the proposed work refers.

2. Related work
One of the most important work in deep semantic seg-
mentation was U-Net [4], a model that strongly relies on
data augmentation and uses some sort of skip connection
between the encoder and the decoder to “preserve” the
features during the up-sampling step. Years later ViT [5]
shows that the reliance on CNNs is not necessary, in fact
it is the first work to prove that a pure transformer applied
directly to sequences of image patches can perform very
well on image classification tasks. Recent methods such
as T2T ViT [6], ViT ADP [7] introduce tailored changes to
ViT to further improve image classification performance.
Other recent works like Swin Transformer [8] and CvT
[9] enhance the local continuity of features in the image
removing fixed size position embedding to improve the
performance of Transformers in dense prediction tasks.
For semantic segmentation in particular, SETR [10] pro-
vides an alternative perspective by treating semantic seg-
mentation as a sequence-to-sequence prediction task. A
relevant work, using transformer architecture, has been
proposed by SegFormer [1], a powerful segmentation
framework made by two main ultra-efficient modules.
We will further elaborate more about SegFormer in the ,
exploring the modules and their approaches. However,
some aspects for semantic segmentation such as compu-
tational efficiency has not been thoroughly studied in the
literature and, in fact, these Transformer-based methods
have very low efficiency and, thus, difficult to deploy
1https://www.synopsys.com/automotive/
autonomous-driving-levels.html
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in real-time applications. Crucial applications such as
road scene understanding in autonomous vehicles need
much more segmentation accuracy without affecting the
efficiency.

3. Datasets
Thanks to the recent works and the state-of-the-art meth-
ods in semantic segmentation, a variety of datasets such
as ADE20k [11], COCO-Stuff [12] and PASCAL VOC [13]
have been proposed, but none of them is precisely de-
veloped from a urban driving environment. Recently,
significant research efforts have gone into new vision
technologies for understanding complex traffic scene and
driving scenario. In this paper, we use two challenging
datasets:

• Cityscapes [2]: is a benchmark suite with a cor-
responding dataset specifically tailored for au-
tonomous driving in an urban environment and
involving a much wider range of highly complex
inner-city street scenes that were recorded in 50
different cities with different sizes, geographic
position and different time of the year. The base
dataset consists of 5000 fine pixel-level annota-
tions layered polygons and realized in-house to
guarantee highest quality levels.

• ApolloScape [3]: ApolloScape is a dataset used
to prove the learning strength of the model, and
was choosen for its stronger challenging environ-
ments. For instance, high contrast regions due to
sun light and large area of shadows from the over-
pass. The specifications of ApolloScape for the
semantic scene parsing are the following: 143906
video frames and their corresponding pixel-level
semantic labelling. The number of given sam-
ples is large and, furthermore, the dataset is more
complex due to the variety of the environments
and image features.

3.1. Metrics
In this work, theMean IoU has been used, a particular
version of the famous Jaccard index calculated by taking
the IoU of each class and averaging them, giving in output
a single value. The Jaccard index measures the similarity
between finite sample sets, and is defined as the size of
the intersection divided by the size of the union of the
sample sets. Another important metric referencing to the
inference time is FLOPs (Floating Point Operations), that
represents the total number of floating point operations
required for a single forward pass. The higher the FLOPs,
the slower the model and hence low throughput. We will
use this metric to measure the efficiency of the proposed
model.

4. Proposed method
This section introduces the basic model used and the
proposed version of the architecture.

4.1. Segformer in detail
SegFormer [1] is an efficient, robust and powerful seg-
mentation framework without hand-crafted and compu-
tationally demanding modules. The architecture con-
sists of two main modules: a hierarchical Transformer
encoder to generate high-resolution coarse features and
low-resolution fine features; and a lightweight All-MLP
decoder to fuse these multi-level features to produce the
final semantic segmentation mask. Image patches of size
4 x 4 (smaller patches favors the dense prediction task)
are used as input to the hierarchical Transformer encoder
to obtain multi-level features at 1/4, 1/8, 1/16, 1/32 of the
original image resolution, that are then passed to the
All-MLP decoder to predict the segmentation mask at 𝐻

4
x 𝑊

4 x 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 resolution. More in detail, the two main
modules can be explained as follows:

• Mix Transformer Encoder: the goal of the en-
tire encoder module, is to generate CNN-like
multi-level features and reduce the original multi-
head self-attention computational complexity of
𝑂(𝑁 6) which, for large image resolutions, be-
comes really prohibitive. Instead, a sequence re-
duction process is used. Given a reduction ratio
𝑅, it is computed as:

𝐾1 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑁
𝑅
, 𝐶 ∗ 𝑅)(𝐾) (1)

𝐾 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐶 ∗ 𝑅, 𝐶)(𝐾1) (2)

As a result, using this Efficient Self-Attention the
complexity of the self-attention mechanism is

reduced from 𝑂(𝑁 2) to 𝑂(𝑁
2

𝑅 ).
• Lightweight All-MLP Decoder: The encoder
incorporates various high-performance sub-
modules, but the most of the work is done by
the lightweight All-MLP decoder. This simple
decoder consists of four steps: first, multi-level
features from the MiT encoder go through an
MLP lyer to unify the channel dimension; then,
these features are then up-sampled to 1/4th of
the input size and concatenated together; next
all the features are fused using an MLP layer and
are finally given in input to another MLP layer to
produce the segmentation mask. By aggregating
the information from different layers, the MLP
decoder combines both local and global attention.



Figure 1: Architecture of the proposed version of the Seg-
Former decoder, called Skip-Decoder.

4.2. SegFormer with Skip Connections
The All-MLP decoder is what makes the SegFormer archi-
tecture so fast and lightweight. The original up-sampling
stage is basically performed with a bilinear interpolation
which makes a large number of the features to be esti-
mated using just a portion of the 𝐻

4 x 𝑊
4 x 𝐶 features. This

work proposes a variant of the previously mentioned de-
coder, in which the up-sampling stage uses more features
to build the feature map with size 𝐻

4 x 𝑊
4 x 𝐶 that is even-

tually given in input to the MLP classifier layer. Taking
inspiration from the work proposed by U-Net [4] authors,
this decoder uses some sort of skip-connections. Consid-
ering the decoder as an expansive path, each decoder step
doubles the feature map size and concatenates two en-
coder hidden state outputs at each iteration. As shown
in Figure 1, there are few simple steps in this decoder.
First, the i-th hidden state is fused with the previous one
(assuming that the first has already been up-sampled)
using a 1x1 convolution that keeps the same size of the
features. Then, this 𝑓 𝑢𝑠𝑒𝑑𝑆𝑡𝑎𝑡𝑒, is up-sampled to match
the size of the hidden state of the next iteration. The up-
sampling is performed as a bilinear interpolation. This
loop is performed 4 times, because in our experiments
the encoder is made by 4 transformer encoder blocks. Fi-
nally, another MLP classifies these fused encoder hidden
states to produce the segmentation map with size 𝐻

4 x 𝑊
4

x 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠.
During the decoding stage, in the classic SegFormer [1],
each encoder hidden state is up-sampled to to 1

4 th of the
image to be fused with the other ones. Consider for exam-
ple an input image of 1024 x 1024 and let’s reason in terms
of pixels. With the hidden states with size 1

32 th,
1
16 th and

1
8 th of the image, the amount of pixels to estimate with
the interpolation is 28672 + 49152 + 65536 = 143460 pix-
els. dUsing the decoder described in this section, the
amount of pixels to estimate (given in input an image
with size 1024 x 1024) is 86016. Hence, this method esti-
mates 40% fewer pixels using, for the interpolation, the
features of the previous block which should give a better
understanding of the data.

5. Experiments
In this section the tests made on the proposed method-
ologies are compared and discussed to figure out the
limitations of the propounded methods and eventually
motivate how any modification in the architecture in-
creases or decreases the performances.

5.1. Expertimental Settings
The encoder is pretrained on Imagenet-1k [14] dataset
and the decoder is randomly initialized. During training,
data augmentation was applied on Cityscapes dataset
through random cropping to 1024 x 1024 and random
horizontal flipping. The ApolloScape dataset, instaed,
was first resized to 2048 x 1024 and then passed through
the same data augmentation as the Cityscapes dataset.
AdamW optimizer [15] has been used with an initial
learning rate value of 0.0006, combined with a StepLR
schedule with a factor of 0.5 and a patience of 5 epochs.
During the training, test and evaluation, before any mea-
surement, the output of the model has been restored to
the full image size using a bilinear interpolation.

5.2. Results
The proposed SegFormer model and its variant are tested
on both datasets presented in section 3, and then com-
pared to the state-of-the-art architectures. A discussion
about limits, performances and model features is pro-
vided in this section.

Method FLOPs mIoU
FCN - MobileNet v2 317.1 61.5
DeeplabV3 - MobileNet v2 556.2 75.2
EncNet - ResNet101 1748 76.6
FCN - ResNet101 2203.3 76.9
DeeplabV3 - ResNet101 2032.4 80.9
MiT-B0 125.5 56.9
MiT-B1 247.9 61.9
MiT-B0 - SkipDecoder (Ours) 107.3 57.6
MiT-B1 - SkipDecoder (Ours) 230.7 61.8

Table 1
Results and comparison on Cityscapes dataset. The FLOPs
are also provided for each model to show the performance/ef-
ficiency trade-off.



IoU
Cityscapes Class MiT-B1 CD MiT-B1 SD
road 96.86 96.51
sidewalk 77.36 75.29
building 87.72 87.52
wall 40.55 35.04
fence 39.17 39.62
pole 34.53 34.11
traffic light 44.37 44.63
traffic sign 53.01 52.69
vegetation 89.46 89.44
terrain 65.35 66.73
sky 93.00 93.42
person 66.93 65.62
rider 40.94 37.65
car 91.28 90.95
truck 50.62 51.26
bus 57.61 64.90
train 56.89 66.48
motorcycle 35.18 27.25
bicycle 55.92 55.24

Table 2
Class IoU of SegFormer MiT-B1 using the Classic Decoder
(CD) and the Skip Decoder (SD).

5.2.1. Results on Cityscapes

As it can be seen from Table 2, the most important classes
are well detected and segmented. Summarily, the model
detects all the flat surfaces and the constructions, respec-
tively with a 96.93 and 87.58 IoU. On the flip side, there
are also different irrelevant misclassified classes, strictly
related to occlusion problems, and it is a common issue
that different systems have. Having a look at the image
𝑏 in Figure 2: it is evident that the model has problems
in distinguishing the man’s leg from the bicycle, due to
the uncommon position taken by the rider, who is usu-
ally seen as a pedestrian in an upright position. In fact,
this problem also leads to a medium/low accuracy on
the object category classes. Without these less relevant
classes, the mean IoU would be about 87.3%, which is
largely comparable with the state-of-the-art methods and
outperforms the methods listed in Table 1.
The same situation was replicated with the proposed

SegFormer variant which uses the decoder described in
subsection 4.2. As expected, the model is faster despite
having the exact same number of layers and the same
performance. On the other hand, this version brings up
the same issues: the up-scaling technique used in the
Skip decoder does not resolve the low IoU encountered
over the object classes. The MiT-B0 model, being a lighter
version of the MiT-B1 model, shows a lower mIoU, but
brings with it all the advantages and disadvantages. In
this case the model is very fast and portable, and the
accuracy makes the model suitable for a driver assistance

Figure 2: SegFormer MiT-B1 segmentation mask on
Cityscapes image test. The image 𝑎 represents the segmenta-
tion mask on the original image. The image 𝑏 shows a partic-
ular segmentation issue.

system under the 3rd level, not sufficient to present it as
a valid proposal for an autonomous driving system with
high automation.

5.3. Results on ApolloScape
Despite ApolloScape is a very demanding and challeng-
ing dataset, the results are partially comparable to those
of Cityscapes. This dataset has multiple classes that refer
to particular elements of the environment that cloud be
considered less relevant to the autonomous driving scene
understanding, such as road piles, dustbins, tunnels and
bridges. Despite the good mIoU, several relevant classes
are not well segmented by the MiT-B1 model, such as
person, wall and motorcycle. The model is not capable
to generalize on a very challenging dataset, and these
results shows us the handicaps of very lightweight archi-
tectures in real-life applications. Anyway, it is possible
to appreciate the MiT-B1 architecture performance com-
pared to the MiT-B0 architecture that was not able to
reach the same level of accuracy despite having a very
large number of samples to be trained on. This could be
caused by the small size of the hidden layers which is
not enough to guarantee a good generalization capabil-
ity but, on the other hand, it is also the reason why the
model has a low inference time. More parameters are
needed to truly appreciate the model’s performance on
such demanding data.
On ApolloScape, the proposed Skip-decoder Seg-

Former performed as good as on Cityscapes without any
meaningful accuracy improvement. The skip-decoder
also shows how the proposed architecture is capable of
keeping the same results regardless of the features of the
dataset which, in ApolloScape case, are very challenging
and tough. Given the results, the model shows a good
robustness even on such demanding datasets.



Method FLOPs mIoU
ResNet-38 175.4 43.07
ERFNet-IntRA-KD - 43.02
MiT-B0 125.5 58.7
MiT-B1 247.9 66.4
MiT-B0 - SkipDecoder (Ours) 107.3 57.5
MiT-B1 - SkipDecoder (Ours) 230.7 66.1

Table 3
Results and comparison on Apolloscape dataset. The FLOPs
are also provided for each model to show the performance/ef-
ficiency trade-off.

Group Classes MiT-B1 MiT-B0
sky sky 99.75 99.60
movable
object

car, motoricycle,
bicycle, person,
rider, truck, bus

65.59 63.16

flat road, sidewalk 87.75 86.67
road ob-
stacles

traffic cone, road
pile, fence

45.97 42.90

roadside
objects

traffic light, sign,
pole, wall, dust-
bin, billboard

56.38 54.63

building building, bridge,
tunnel, overpass

82.93 81.48

natural vegetation 95.34 95.03

Table 4
Category/Class IoU of SegFormer MiT-B1 (on the left) and
MiT-B0 (on the right) with classic decoder on ApolloScape
dataset

6. Inference Time
In this work, the inference time application is a crucial
aspect, because the real-time requirement of the model
should be enough to make the driving automation system
able to take the correct decision, e.g. warn the driver to
turn in a particular direction to avoid an obstacle that
the driver was not able to see in time. The GPU used for
inference time tests is a NVIDIA Tesla V100 with 32GB
GDDR6, and the tests are made for two different image
sizes (2048x2048, 3480x3480).

inference time (ms)
Model type 2048 3480
MiT-B0 41ms 69ms
MiT-B0 + SkipDecoder (Ours) 40ms 68ms
MiT-B1 44ms 72ms
MiT-B1 + SkipDecoder (Ours) 41ms 69ms

Table 5
Inference time computed for every different model type (com-
puted in milliseconds).

The FLOPs difference between the model with and
without the skip decoder is noticeable, but the inference

time difference shown in Table 5 is just slightly lower.
Hence, even if the number of floating point operations
is lower, the difference is not very significant. Now, it
is analyzed the inference time presented above by con-
sidering a hypothetical situation for a car going 60km/h
(16m/s) in a urban environment. On 2048x2048 images
the inference time is better and the model is able to per-
form at about 25 frames per second and it is potentially
capable to give a remarkable support to almost all driv-
ing automation levels. At 60km/h, the system is able
to give a result every 0.6 meters (every 40ms). And at
100km/h, working at 40ms, the model gives a result every
single meter, which is acceptable considering a highly
automated driving system that modifies the behavior of
the car (such as speed, trajectory etc.) without the human
control that would also include human reaction times in
the calculation.

7. Conclusions
The work presented herein is a study of real-time seman-
tic segmentation for autonomous driving purposes and
new techniques that may or not may be useful for new
methodologies. The Skip-decoder SegFormer has been
advanced, an efficient model composed by a transformer
encoder that manages to be used of difficult segmentation
tasks, and a lightweight all-MLP decoder which, in the
proposed version, uses a faster and efficient up-sampling
technique inspired by U-Net. Finally, this has allowed to
find an effective method both from the point of view of
metrics and from that of computational resources, bal-
ancing these two aspects into a light model powerful
enough to be ran in real-time without compromising too
much with performance. In addition, such solution can
be compared with a variety of techniques in terms of
speed and accuracy trade-off, being capable of increase
its performance just by modifying some architectures
parameters at the expense of efficiency.
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