

Few Shot Learning Approaches for Classifying Rare Mobile-App Encrypted Traffic Samples

Giampaolo Bovenzi, Davide Di Monda, Antonio Montieri, Valerio Persico, and Antonio Pescapè

University of Napoli Federico II, Napoli (Italy)

Al per l'Industria Ital-IA, Pisa 29-31 May 2023

Mobile-App Traffic Classification

- **Deep Learning (DL)** is **effective** for classifying **encrypted network traffic**
 - But it requires large amounts of labeled data to provide satisfactory results
- Collection of large labeled network-traffic datasets

 Number of new apps constantly rising (4.67 million apps during the last quarter of 2021¹)

Mobile-App Traffic Classification: Issues

- Deep Learning (DL) is effective for classifying encrypted network traffic
 - But it requires large amounts of labeled data to provide satisfactory results
- Collection of large labeled network-traffic datasets
 - Time-consuming process
 - User-privacy and business-sensitivity concern
- Number of new apps constantly rising (4.67 million apps during the last quarter of 2021¹)
 - DL models need to be re-trained in order to classify the newly published apps

Mobile-App Traffic Classification: Issues

- Deep Learning (DL) is effective for classifying encrypted network traffic
 - But it requires large amounts of labeled data to provide satisfactory results

Few-Shot Learning

Few-Shot Learning (FSL) aims at tackling this issues, by leveraging non-few knowledge (**prior knowledge**) in order to build a **model capable of generalizing** enough on new tasks **with few samples available**

Research questions

- Can be **FSL approaches** applied to the **mobile-app encrypted traffic classification**?
 - ... and how to tailor it to this domain?
- What is the impact of using different **FSL setups** in terms of **number of training classes N** (viz. Apps) and **number of shots K** (viz. biflow for each App)?

N-way K-shot setup

Few-Shot Learning: Paradigms

• Transfer Learning

• Aims to *transfer knowledge* from a task to a related one with the objective of **fast adaptation**, **reduced complexity**, and **performance improvements**

• Meta Learning

- It is the ability of "Learning to learn" or learning to compare
- The ultimate goal is to provide a **model capable of generalizing** enough on tasks with **unseen** classes

Preliminary: Dataset Partitioning

- The **most populated** classes are separated from the **less populated** ones
 - Most populated classes are included in the training set D_{nf} \rightarrow used for **training**
 - Less populated classes are included in the testing set D_f \rightarrow used for **testing**

Transfer-Learning Approaches

- The Transfer-learning approaches use prior knowledge (**D**_{nf}) to learn a **good initialization point** for the model weights, i.e. *base model*
- The base model is **adapted** to classify few-shot classes (**D**_f)
 - Done via **fine-tuning** to different extents

Meta Learning: Episodic Learning

The **meta learning** is **used jointly** with **episodic learning**

Episodic Learning

- Training is organized as series of learning problems (**episodes**)
- Episodes mimic the **inference** scenario

Meta Learning: Task Configuration

- Prior knowledge (**D**_{nf}) used to train an **embedding function** (*f*)
 - similar samples are closer to each other
 - *dissimilar* samples are more *easily separable*
- Doing so they manage to reduce the hypothesis space complexity

- Classification is performed by measuring the similarity of support and query feature vectors through a **comparator** (*c*), e.g., k-NN, SVM, NN.
- The output of the comparator is a **similarity score**
- Model-based methods differ according to the comparator

Experimenting with FSL: Dataset

- MIRAGE-2019
 - Collected at ARCLAB University of Napoli Federico II from May '17 to May '19
 - Publicly available (scan the code!)
 - Human-generated dataset (~300 users)
 - 40 popular Android / 16 different app categories
 - **Biflows** as traffic object

Experimenting with FSL: Dataset Partitioning

Experimenting with FSL: Input Data

- PSQ: informative fields of the first
 N_p = 10 packets of each biflow
 - (L4) Payload Length (PL)
 - Inter-Arrival Time (IAT)
 - Direction (**DIR**): upstream/downstream
 - TCP Rcv Window (**WIN**): 0 for UDP packets

Experimenting with FSL: Embedding Function

Impact of a wider App pool during training

8-way 100-shot

We want to evaluate the ability of the algorithms to extend acquired knowledge on minority classes by using a wider train class pool

Ongoing and Future Directions

- **Optimization of the learning objective** by using more complex loss functions to enhance the goodness of embeddings
- The adoption of **different embedding functions** (e.g., **multimodal architectures**) to explore their benefits in this context
- The investigation of **data-based approaches** with the augmentation of samples from few-shot classes

Thanks for your attention

Questions?

Contacts: giampaolo.bovenzi@unina.it - wpage.unina.it/giampaolo.bovenzi

Backup Slides

- Matching Networks
 - Distance between the query and support set samples in the embedded space (nearest-neighbor based)

- Matching Networks
- Prototypical Networks
 - Distance between the query sample and prototypes of each class in the support set in the embedded space (nearest-neighbor based)

- Matching Networks
- Prototypical Networks
- Relational Networks
 - Measure the similarity in the embedded space between the query sample and prototypes of each class in the support set through a CNN with a Sigmoid Function

- Matching Networks
- Prototypical Networks
- Relational Networks
- MetaOptNet
 - Employs a linear Support Vector Machine (SVM) as a base learner

Impact of the number of Apps

N-way 25-shot

Impact of the number of Apps

N-way 25-shot

