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Abstract
Anomaly detection is a long-standing field of research that aims to identify anomalous patterns that differ from those
seen in regular instances. In defect detection, the normal and the abnormal samples differ in their local appearance but
are semantically identical, for example, defects in printed circuits, cables, or medicinal pills. There are many datasets for
unsupervised defect detection at the image level which have led to the development of several methods, but some anomalies
appear in the geometry or density-based property of an object which means we need a 3D approach. Although most companies
already have advanced vision systems capable of capturing 2D images and 3D measurements of objects, there is a lack of 3D
datasets specifically designed for defect detection and anomaly localization in industrial environments. As it is clear that 3D
anomaly detection is a field that needs more exploration, we decided to focus our research on defect detection in volumetric
industrial data. To achieve this goal, we first worked on the segmentation of volumetric medical data, due to a large amount
of publicly available datasets and the similarities in the design principles of the architectures used for both anomaly detection
and segmentation. Our final model achieved comparable results to state-of-the-art methods in the medical field by being on
average ×2 faster with less than 1/3 of parameters. In the next work, we will adapt the obtained model for defect detection
using our internal industrial dataset.
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1. Introduction
Anomaly detection is a long-standing field of research
with early exploration dating back to the 1960s [1]. It
aims at identifying anomalous patterns that are different
from those seen in regular instances. In computer vision
”Anomaly Detection” has many facets, which is why the
term summarizes different tasks in the literature. In the
case of multi-class classification, the term is often used to
describe Out-of-Distribution Detection (ODD) or novelty
detection, where the task is to determine at inference
time if a test sample belongs to one of the classes the
model was trained with. Aside from ODD detection,
one can consider two anomaly detection variants: (i)
semantic anomaly detection, in which the normal and the
abnormal samples differ in their semantic meaning; (ii)
defect detection, in which the normal and the abnormal
samples differ in their local appearance (i.e., defect), but
are semantically identical.

Due to the nature of the problem, applying supervised
learning methods have huge drawbacks induced by the
difficulty of defining and collecting enough abnormal
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data, the inability of the trained model to detect new
types of rare events, and expensive labelling. This re-
sulted in a methodological shift towards unsupervised
or semi-supervised learning. In the field of anomaly
detection, the terms unsupervised and semi-supervised
are interchanged. Unsupervised learning means using
data without labels, i.e., using both normal and abnormal
data undistinguished like in [2]. With semi-supervised
learning instead, we are using only normal data. In the
literature, most of the time unsupervised learning refers
to using only normal data without any form of labelling
(like in [3, 4, 5]).

2. Defect detection in the
industrial field

It is not uncommon to see operators discriminating be-
tween good and defective parts right next to the produc-
tion line. These human experts are valuable to the com-
pany and sometimes unique: since the market demand
decides the number of manufactured pieces, managing
work shifts is not always straightforward. Moreover,
even when setting up automated systems becomes com-
pelling, the latter’s need for labelled data makes human
knowledge essential. While labelling is expensive and
time-consuming, it is easy to acquire data. Given the
vast amount of unlabeled data available, this situation
perfectly blends with the task of unsupervised defect de-
tection and localization. In defect detection, the normal
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and the abnormal samples differ in local appearance but
are semantically identical, for example, defects in printed
circuits, cables, or medicinal pills. Usually, it is com-
bined with defect localization that provides a heatmap
indicating the location of an outlier.

MVTec AD [6] is the most widely used dataset for
anomaly detection and localization. There is a glut of
literature relating to image-level defect detection in the
MVTec AD dataset with approaches reaching on aver-
age 99% accuracy in terms of Area Under the Receiver
Operating Curve (AUROC). There is little room for im-
provement. The question that naturally arises is: where
more research is needed?

3. 3D defect detection
Some defects manifest as anomalies in the geometric
structure or density-based property of an object, which
leads to the necessity of a 3D representation, e.g., 3D
printing, structured light and computer tomography. In
recent years industrial Computed Tomography (CT) has
become increasingly popular in industries. It is a non-
destructive testing method for the precise examination of
components and it can be used to create precise internal
views of parts, weld seams, and electronic components.
Through CT scans 3D information is provided by stacking
multiple grayscale images to form a dense voxel grid. The
final high-resolution and three-dimensional image can
be used to localise and evaluate defects such as pores,
voids and inclusions. Valuable for quality control is also
3D printing, where layers in the additive printing process
can be imaged providing a volume of data to be analyzed
for anomalies.

There is a lack of a comprehensive public 3D dataset
designed explicitly for the detection and localization of
anomalies. This led Bergmann et al to develop MVTec
3D-AD [7] dataset. InMVTec 3D-AD, the nature of data is
fundamentally different from the volumetric information
provided by CT scans. The dataset describes the geo-
metric surface of objects by acquiring data that also has
depth information with respect to the local camera coor-
dinate, that is to say, we are dealing with point clouds.
The best approach so far [8] reaches a detection accu-
racy in terms of AUROC of 72.7%. However, the authors
developed a model based on strong pre-processing and
handcrafted orientation-invariant representations. Other
approaches apply networks that were originally devel-
oped for segmentation on medical CT scans (like [9, 10]).
Unfortunately, we are still missing public datasets of
volumetric scans in industrial production processes for
quality control.

4. Model complexity when
dealing with volumetric data

When dealing with volumetric data conventional 2D Con-
volutional Neural Networks (CNNs) are computationally
cheap but cannot capture three-dimensional features. On
the other side, although 3D CNNs are designed to learn
three-dimensional features, they require higher computa-
tion costs, resulting in higher inference latency compared
to 2D CNNs. Besides, the large number of parameters
of 3D CNNs may result in a higher risk of overfitting,
especially when encountering small datasets for training.
This is very common in the medical or industrial fields
as it is especially difficult to collect volumetric datasets
due to accessibility issues for ethical or privacy reasons,
and limited time and budget for annotations.

There have beenmany efforts to trade offmodel perfor-
mance and computational complexity in other computer
vision fields such as video analysis and action recognition
([11], [12], [13], [14]). It makes sense to learn spatiotem-
poral features using 3D convolution since a video can be
seen as a temporally dense sequence of images. How-
ever, as previously mentioned, dealing with 3D CNNs is
computationally intensive

5. Our model
Following the observation of a gap in the literature re-
garding 3D anomaly detection, we decided to focus on
3D defect detection. The largest part of our work done
so far has focused on segmenting volumetric medical
data, due to the big amount of publicly available datasets
(like [15, 16, 17, 18]) and the similarity of architectures to
the ones applicable to anomaly detection task. Both in 3D
segmentation and video action recognition, there are ap-
proaches directly using 2D CNN. However, in the context
of 3D medical images using 2D convolutions appear to be
sub-optimal because valuable information along the third
axis cannot be aggregated and taken into consideration,
while, in videos, applying 2D convolutions on individual
frames cannot well model the temporal information. On
the other side, the computational cost for 3D CNN is
large, making the deployment on edge devices difficult.
To overcome the problem we decided to integrate some
intuitions from the video action recognition field into
the task of medical segmentation. We obtained a final
network having computational complexity equal to 2D
CNNs but performance comparable to fully 3D CNNs.

6. Results
We evaluated our model on AMOS [18] dataset intro-
duced as part of the MICCAI 2022 challenge. AMOS is a



Models mDSC(%) Params(M) Flops(G)
UNet [19] 88.87 31.18 680.31
VNet [20] 81.96 45.65 849.96
CoTr [21] 77.13 41.87 668.15
nnFormer [22] 85.63 150.14 425.78
UNETR [23] 78.33 93.02 177.51
Swin.UNETR [24] 86.37 62.83 668.15
Our Model 87.27 6.48 288.99

Table 1
Overall results of six state-of-the-art methods taken from
the official AMOS-CT validation benchmark in [18] and our
model.

large-scale, diverse, clinical dataset for abdominal organ
segmentation that provides 500 CT and 100 MRI scans
accompanied by voxel-level annotations for 15 organs.
We compared our model with six state-of-the-art med-
ical segmentation methods present in the benchmark
in AMOS using the Dice Score as the evaluation metric.
The Dice score is a common metric used to measure the
amount of overlap between two regions. It ranges from
0 to 1, where 1 corresponds to a pixel-perfect match be-
tween the deep learning model output and ground truth
annotation. As shown in Table 1 we achieve an overall
accuracy of 87.27% gaining the second position in the
benchmark right after UNet [19]. For a fair comparison,
the results in the table are obtained by training for 1000
epochs using SGD optimizer with a momentum of 0.99,
warm-up cosine scheduler for 50 iterations, an initial
learning rate of 0.01, and a batch size of 2, recreating
the same training condition of the benchmark created
in [18]. We also expressed the model complexity in terms
of floating-point operations per second (FLOPs) and the
number of parameters. In the same table, we can see that
our network is computationally and parameter count-
wise more efficient by being on average ×2 faster with
about 1/3 of parameters.

In Figure 1 we visualize representative samples com-
paring the groundtruth with our predictions. In the first
row, we can see, as pointed out by the red arrow, that
the segmentation masks for the pancreas (light green)
and inferior vena cava (dark green) are separated but
should touch one another. There are only a few pixels
misclassified in this example, as in the last row where the
segmentation mask of the pancreas highlighted in green
is slightly larger than it should be. The larger error in the
figure can be seen in the second row, where our model
incorrectly labels parts of the duodenum highlighted in
yellow, with the stomach, which is highlighted in blue.

Figure 1: Qualitative visualizations of the proposed model
on the AMOS-CT validation set.

7. Conclusion
We acknowledged the existence of a research gap in 3D
anomaly detection also due to the lack of proper pub-
lic datasets. To overcome the problem we decided to
temporarily shift our attention to the segmentation of
volumetric data. Our target was to develop an efficient
model that can reach comparable results to other state-of-
the-art approaches in the field, and wewere able to obtain
that. Our next target is to adapt the obtained model for
defect detection using our internal industrial dataset.
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