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Abstract
This article introduces DelBERTo, a resource-efficient Transformer architecture for Natural Language Processing (NLP).
Transformers replace convolutions and recurrence with the self-attention mechanism and represent the state-of-the-art in
NLP. However, self-attention’s complexity grows quadratically with the size of the input, which limits their applications.
DelBERTo relies on adaptive input and on a deep yet lightweight Transformer architecture to reduce the number of learnable
parameters, and relies on adaptive softmax to improve pre-training speed and memory footprint. We evaluate the proposed
architecture in a sentiment analysis task and compare it against AlBERTo, a BERT model representing the state-of-the-art
in sentiment analysis over Italian tweets. DelBERTo has only one-seventh of AlBERTo’s learnable parameters, is faster,
and requires less memory. Despite this, our experiments show that DelBERTo is competitive with AlBERTo over the three
SENTIPOLC sub-tasks proposed at EVALITA 2016: subjectivity classification, polarity classification, and irony detection.
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1. Introduction
Natural Language Processing refers to the automated
analysis of written text for tasks such as machine trans-
lation, question answering, and sentiment analysis.

Techniques based on deep learning represent the state-
of-the-art in many NLP tasks. Among these, Recurrent
Neural Networks (RNNs) [1] enjoyed widespread popu-
larity due to their ability to process sequences of vari-
able length via the recurrence mechanism. RNNs’ main
downside is that they suffer from the vanishing gradient
problem and are not suitable to model long-term depen-
dencies. Newer RNN architectures, such as Long Short
Term Memory (LSTM) [2], overcome these limitations,
but they still have one major downside: they are not able
to take advantage of the parallelism of the hardware since
they are sequential in nature. Other architectures, such
as CNNs [3], are more parallelizable but cannot model
long-term dependencies like LSTMs do.

Transformers [4] were introduced for machine trans-
lation tasks, and they simultaneously solved all of the
previously mentioned problems. Transformers are based
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on the self-attention mechanism, which allows discover-
ing relationships between different parts of a sentence.
The complexity of the self-attention mechanism, which
grows quadratically with the size of the input, represents
the main limiting factor in their practical adoption. In
recent years, efforts have been made to improve the effi-
ciency of the Transformer architecture. Some techniques
directly target the computational complexity of the self-
attention mechanism, while others target the model as a
whole. Despite these efforts, this complexity problem is
still not completely solved.

This paper presents DelBERTo, a transformer-based
lightweight architecture for NLP. DelBERTo builds upon
the Deep and Light-weight Transformer (DeLighT) [5],
which reduces the parameters and redistributes them
among the different parts of the network. In this work,
we leverage adaptive input [6] and adaptive softmax [7] to
further slash the complexity to a point where it becomes
affordable for practical applications. We also modified
the DeLighT architecture to be encoder-only, which is
more suitable for classification and sequence labeling
tasks. We evaluate DelBERTo over the SENTIPOLC 2016
challenge [8], whose tasks are subjectivity classification,
polarity classification, and irony detection. AlBERTo [9],
a BERT [10] model for the Italian language, represents
the best performer in this challenge. Our experiments
show that DelBERTo achieves an F-score of 73% in sub-
jectivity classification (AlBERTo 79%), 69% in polarity
classification (AlBERTo 72%), and 62% in irony detection
(AlBERTo 61%), despite having only one-seventh of Al-
BERTo’s learnable parameters, being faster, and requiring
much less memory.
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2. Background and Related Work
The Transformer was originally proposed as an encoder-
decoder architecture for NLP tasks. The key characteris-
tic of the Transformer is the attention mechanism, which
aims at uncovering the relationship between words in
two input sentences. Input sentences are first tokenized
and then passed to an embedding layer that maps every
token to a continuous representation 𝑥 ∈ ℝ𝑑𝑒 , where 𝑑𝑒
is the size of the embedding vectors. Finally, to encode
the information about the position of the words in the
sentence, a positional encoding is used.

The attention layer calculates the scaled dot product
attention between input sentences. The inputs to this
layer are three matrices: query Q, key K, and value V.
The attention mechanism gives the values weighted by
the softmax of the dot-product of all the queries and all
the keys. If the three input matrices are the same, it
is called a self-attention mechanism; otherwise, we talk
about cross-attention. To improve the model performance,
the Transformer architecture runs different attention lay-
ers in parallel, a mechanism called multi-head attention.

After the introduction of the Transformer, several new
variants were proposed. One of the most famous is
BERT, the current state-of-the-art language understand-
ing model. It is an encoder-only architecture that can
be used for more than one NLP task by fine-tuning it.
Most importantly, BERT uses a Masked Language Model
(MLM): during the training, random terms are masked
in order to be predicted by the network. Finally, BERT
employs a weight sharing technique to improve the effi-
ciency of the Transformer, in particular by reusing the
embedding matrix in the output layer.

AlBERTo represents the first BERT model trained on
tweets in Italian. In particular, it was pre-trained on
TWITA [11], a dataset containing tweets in Italian that is
constantly updated. The particular version used contains
about 200 million tweets without annotations, which
makes it ideal for pre-training models in a self-supervised
way by using the MLM technique. AlBERTo was fine-
tuned on the 3 tasks of SENTIPOLC 2016, reaching state-
of-the-art results on this challenge. In Sec. 4.3, we com-
pare our results to those of AlBERTo.

Even though transformers like BERT score top-notch
performance in several NLP tasks, the computational
complexity of the attention layer is a major drawback to
their practical adoption.

3. Proposed Method
This section introduces our transformer-based architec-
ture for NLP, named DelBERTo, short for Deep and Light-
weight Bidirectional Encoder Representations from Trans-
formers.

The architecture of DelBERTo is inspired by the De-
LighT architecture, and it was designed by us to be
encoder-only. Fig. 1 depicts the architecture of Del-
BERTo. As shown, the embedding layer is composed
of adaptive input followed by a DeLighT transformation
(both explained later in this section). After the embed-
ding layer, positional encodings are added, followed by
a series of 𝑁 DeLighT encoder blocks. These blocks are
similar to the original Transformer’s encoder blocks. The
main differences are the fact that they start with a De-
LighT transformation, the use of a single-head attention,
and lastly, the fact that the fully connected network (FFN)
first reduces the dimension of the hidden vectors and then
expands it, thus saving parameters compared to doing
the opposite. After the last encoder block, an adaptive
softmax layer is employed. The weights of adaptive input
and adaptive softmax are shared.

3.0.1. Adaptive Input and Adaptive Softmax

Transformer architectures that use large vocabularies
have embedding layers characterized by a very large
weight matrix. The output layer multiplies this weight
matrix with the output of the previous layer during pre-
training with MLM. This matrix multiplication is slow
and problematic due to the large amount of GPU mem-
ory required for its calculation. These problems can be
mitigated by substituting the embedding layer with an
adaptive input layer and by using an adaptive softmax
layer instead of the last matrix multiplication followed
by the softmax function.

Adaptive input is a drop-in replacement for the embed-
ding layer, i.e., it does not require any modifications to
the rest of the model’s computational graph. To reduce
the number of parameters, each token is assigned to one
of 𝑛 different clusters based on its frequency and has an
embedding vector whose size depends on the cluster: the
most frequent tokens are assigned to the first cluster and
have embedding vectors of size 𝑑𝑒, while the others with
a lower frequency are assigned to subsequent clusters
and have progressively smaller embedding vectors (of
size 𝑑𝑒/𝑘𝑖−1, where 𝑖 is the index of the cluster, 1 ≤ 𝑖 ≤ 𝑛
and 𝑘 represents the projection factor). The reduction
of the embedding vector sizes produces, as an effect, a
reduction in the number of parameters needed in the
embedding layer.

In models that use the decoder-only or encoder-
decoder architectures, the output of the network is the
probability distribution for the next token, calculated us-
ing the softmax activation function. Adaptive softmax is
a speedup technique used to replace the last dense layer
with the softmax activation function in a neural network
used for language modeling. Similarly to adaptive input,
adaptive softmax performs a partition of the vocabulary
into clusters. The first cluster contains the words oc-



Figure 1: Architecture of DelBERTo

Figure 2: Example of a DeLighT Transformation during the
expansion phase

curring with the highest frequency, and it represents
the distribution’s head, while the other clusters contain
words occurring with a lower frequency and represent
the tail of the distribution. Adaptive softmax takes in-
spiration from the class-based hierarchical softmax. The
head cluster contains a special token for each tail cluster,
which is used to model the probability that an output
token belongs to the considered tail cluster. Then, since
in the MLM task the labels are one-hot vectors indicating
which token is the right one, the softmax output in the
loss function is not explicitly calculated for all clusters
but only for the head cluster (containing the most fre-
quent tokens) and for the cluster containing the token
indicated by the one-hot vector (which might likely coin-
cide with the head cluster). This optimized loss function
makes it possible to save GPU memory and speed up the
computation.

3.0.2. The DeLighT Transformation

Let us now describe what the DeLighT transformation
actually is. As shown in Fig. 2, the DeLighT transfor-
mation is composed of a series of three different kinds
of layers: the Group Linear Transformation (GLT) [12]
layer, which corresponds to the parallel dense layers in
the figure; the input mixer [13] layer; and the feature shuf-
fle layer [14]. The DeLighT transformation is composed
of two distinct phases: the expansion phase, character-
ized by an increase in the number of parallel dense layers
(groups) in the GLTs and in the size of the GLTs’ output
vectors, and the reduction phase, in which the opposite
situation occurs.

Let us now describe the three layers of the DeLighT
transformation. The GLT layer splits an input vector of
size 𝑑𝑖 into 𝑔 vectors of size 𝑑𝑖

𝑔 . Each of these vectors

is then passed as input to a different dense layer, which
produces vectors of size 𝑑𝑜

𝑔 . Finally, the output vectors are
concatenated into a single vector of size 𝑑𝑜. The splitting
and concatenation operations are shown in Fig. 2 as
circles. The feature shuffle layer performs a reshaping of
the input vector 𝑥 ∈ ℝ𝑑 into a matrix of size 𝑔 × 𝑑

𝑔 , then
transposes this matrix and reshapes it back into a vector.

The input mixer layer takes two vectors, 𝑥 ∈ ℝ𝑑𝑥
and 𝑦 ∈ ℝ𝑑𝑦 , as input. It then splits each input vec-
tor into 𝑔 vectors such that 𝑥 = Concat(𝑥1, ⋯ , 𝑥𝑔),
𝑦 = Concat(𝑦1, ⋯ , 𝑦𝑔) and produces an output vector
𝑧 = Concat(𝑥1, 𝑦1, ⋯ , 𝑥𝑔, 𝑦𝑔). This layer acts as a replace-
ment for residual connections since they cannot be used
in the DeLighT transformation because they require vec-
tors of the same size. The encoder layers in DelBERTo
gradually become deeper and wider when moving from
the first one to the last one.

3.0.3. Configuration

To instantiate DelBERTo, the vocabulary size 𝑉, the size
of the embedding vectors 𝑑𝑒, and the maximum length
of the input sequence take values of 128k, 768, and 128
respectively, as in AlBERTo, to ensure a fair comparison.

3.1. Training Procedure
The training procedure consists in a preliminary, self-
supervised pre-training stage over a larger dataset, fol-
lowed by a supervised fine-tuning stage over a smaller
dataset. In both stages, the text of each tweet is prepro-
cessed as in [9]. Following AlBERTo’s training procedure,
the network is first trained on the TWITA dataset over
the MLM task. In this task, a single sentence is used as
input, and 15% of its tokens are randomly selected to
be either masked, replaced with a random token, or left
unchanged. For each selected token, one of these 3 trans-
formations is chosen randomly. In particular, masking
is chosen 80% of the time, while the other two transfor-
mations are chosen 10% of the time each. The network
is then trained to predict the selected tokens, therefore
learning a language model. As for AlBERTo, we did not
use the Next Sentence Prediction task since the dataset
is not structured in a suitable way.



Next, the fine-tuning stage consists in training Del-
BERTo on all three tasks of the dataset provided for the
SENTIPOLC 2016 challenge described in Sec. 4.1. In par-
ticular, we trained a DelBERTo binary classifier for each
of the four labels in the dataset, as was done for AlBERTo.
More details about how the training was performed in
the different experiments can be found in Sec. 4.2.

4. Experiments
To evaluate the proposed architecture, we tested Del-
BERTo on the SENTIment POLarity Classification Task
2016 (SENTIPOLC 2016). In this section, we first describe
the SENTIPOLC 2016 dataset, and then we report the
results of our experiments on this challenge, comparing
them against the state-of-the-art.

4.1. Datasets
The SENTIPOLC 2016 challenge proposes three tasks on
sentiment classification at the message level for Italian
tweets: subjectivity classification, polarity classification,
and irony detection. The training set of SENTIPOLC 2016
contains 7410 tweets in Italian. Each of them is annotated
with a binary label for irony, one for subjectivity, and two
binary labels for polarity. The combination of these two
labels can express positive, negative, neutral, or mixed
sentiment.

4.2. Setup
All experiments except one were performed using two
Nvidia GTX 1080 Ti GPUs with 10 GB of memory each.
Ideally, we wished to use the same training hyperpa-
rameters as AlBERTo to guarantee comparable results.
However, the hardware constraints forced us to adapt
the hyperparameters.

4.2.1. Pre-training

Like AlBERTo, we defined one epoch as equal to 2500
training steps. For the initial pre-training of DelBERTo,
we did use the same batch size as AlBERTo (128) since
the GPU memory was enough. We also used the same
number of epochs (400). The pre-training took about 9
days.

4.2.2. Fine-tuning

We experimented with two different fine-tuning strate-
gies, starting from the best checkpoint produced during
pre-training. During fine-tuning, about 5% of the train set
was left out for validation purposes, and the epochwas de-
fined as one iteration of the dataset. In the following, the
first fine-tuning strategy is referred to as DelBERTo-1S. In

this case, we simply fine-tuned the entire network for 219
epochs with a learning rate (LR) of 2e−5, as for AlBERTo.
Yet, due to GPU memory limitations, we could not afford
AlBERTo’s batches of 512 and had to use smaller batches
of 128. The second fine-tuning strategy, DelBERTo-2S, re-
lies on a more sophisticated two-stage approach. During
the first stage, we froze the weights of all layers except
the output layer and trained the network for 50 epochs
with a LR of 1e−4. By training the output layer only, we
could afford a larger batch size of 512 in this first stage.
Furthermore, this prevents very large gradient updates,
which would degrade the pre-trained weights since we
are mixing pre-trained layers with a new, randomly ini-
tialized, output layer. Once convergence is reached, it
is safe to proceed with the second stage, in which we
trained all the layers with a lower LR of 1e−6 for 169
epochs. Due to the complexity of training all the layers
and the fact that one GPU was not available to us for this
fine-tuning, a smaller batch size of 64 was used.

4.2.3. Ablation Study

Finally, for the purpose of evaluating the impact of
adaptive input and adaptive softmax in isolation, we
consider another model that we call AdalBERTo. This
model is based on BERT. The only difference is that
AdalBERTo uses adaptive input and adaptive softmax in-
stead of BERT’s embedding layer and output layer. Adal-
BERTo was pre-trained and fine-tuned almost exactly
like DelBERTo-1S. The only difference is that during pre-
training and fine-tuning, we had to use a batch size of 64
because of hardware limitations. Nonetheless, we com-
pensate for the smaller batch size by using 800 epochs
during pre-training and by doubling the number of train
steps per epoch during fine-tuning. The pre-training took
about 17 days, nearly twice as much as DelBERTo. All
the models were fine-tuned once for each label, creating
4 binary classifiers like it was done for AlBERTo.

4.3. Results
Table 1 summarizes the results of our experiments. The
top half contains the results of AlBERTo and other refer-
ences from [9]. The bottom part contains the results for
DelBERTo and AdalBERTo produced by our experiments.
F1 Scores have been calculated by running the official
evaluation script and using the official SENTIPOLC 2016
test set, which contains 2000 examples. For each of the
three tasks, three columns are presented. The first two
columns show the F1 Score of each class, while the F
column represents the mean of the two columns. For
the polarity task, since the number of classes is 4, the
Pos column shows the mean of the F1 Scores for the
positive class and the non-positive class, and the Neg col-
umn shows the mean of the F1 Scores for the negative



Table 1
Results over the three SENTIPOLC 2016 classification tasks

Subjectivity Polarity Irony Params
Obj Subj F Pos Neg F Non-I Iro F [M]

AlBERTo 73.98 84.15 79.06 71.55 72.91 72.23 94.08 27.72 60.90 184
Unitor.1.u 67.84 81.05 74.44 63.54 68.85 66.20 n/a n/a n/a n/a
UniPI.2.c n/a n/a n/a 68.50 64.26 66.38 n/a n/a n/a n/a
tweet2check16.c n/a n/a n/a n/a n/a n/a 91.15 17.10 54.12 n/a

AdalBERTo 71.74 78.38 75.06 73.84 64.76 69.30 93.79 17.20 55.50 97
DelBERTo-2S 68.11 78.34 73.22 70.43 68.93 69.68 93.00 31.35 62.18 24
DelBERTo-1S 68.29 76.03 72.16 59.30 63.31 61.31 93.05 26.59 59.82

Table 2
Benchmark results for batch size = 32

Metric Task AlBERTo AdalBERTo DelBERTo

Speed (ex/sec)
PT 70 179 (2.57x) 282 (4.03x)
FT 169 185 (1.09x) 291 (1.72x)
INF 204 200 (0.98x) 229 (1.12x)

Memory (MB)
PT 25308 7435 (0.294x) 4250 (0.168x)
FT 8115 7090 (0.874x) 3915 (0.482x)
INF 1041 1043 (1.012x) 204 (0.196x)

Parameters 184.0 M 97.5 M (0.529x) 24.1 M (0.131x)

class and the non-negative class. As shown in Table 1,
DelBERTo-2S achieves results close to AlBERTo’s at a
fraction of the parameters. At the irony detection task,
DelBERTo-2S gets better results than AlBERTo, whereas
DelBERTo-1S is close but does not surpass it. The reason
why DelBERTo-2S is better than DelBERTo-1S is the fact
that it uses the two-stage fine-tuning process, which, as
previously described, prevents the degradation of the
pre-trained weights.

4.3.1. Complexity

For the purpose of comparing the computational com-
plexity of DelBERTo with AlBERTo, we implemented
the same BERT architecture used by AlBERTo. Adal-
BERTo uses the same code but with the modifications
previously described, so as to minimize the differences
in the implementation. For these benchmarks, we were
given temporary access to one Nvidia A40 GPU with 48
GB of memory. In particular, we measured the computa-
tional performance differences in terms of the peak GPU
memory consumption and the number of examples per
second that the models were able to process. We mea-
sured these two metrics during pre-training, fine-tuning
and inference with different batch sizes (all the powers
of two between 1 and 64 inclusive).

Figure 3 shows the results of all the benchmarks, while
Table 2 focuses on the results for a batch size of 32 ex-
amples. The first result to notice is the vast difference in
speed and memory footprint between DelBERTo and the
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Figure 3: Benchmark results. The first row shows the speed,
while the second one shows the peak GPU memory usage.
Each column shows a different task.

references during pre-training (PT), which constitutes the
bulk of the training time. Due to the lightweight DeLighT
architecture and the adaptive input and adaptive softmax
layers, DelBERTo is 4.03 times faster than AlBERTo for a
batch size of 32. AdalBERTo shares the same BERT archi-
tecture as AlBERTo, yet it is still 2.57 times faster than
AlBERTo thanks to adaptive input and adaptive softmax.
So, we conclude that the DeLighT architecture, adaptive
input, and adaptive softmax are about equally responsi-
ble for the faster training of DelBERTo. Regarding the
memory footprint, DelBERTo and AdalBERTo use only
16.8% and 29.4% of the memory used by AlBERTo, re-
spectively, with adaptive softmax representing the major
source of memory savings. Regarding fine-tuning (FT)
and inference (INF), the performance of AlBERTo and
AdalBERTo is, as expected, similar since i) they share the
same BERT architecture and ii) fine-tuning and inference
do not use the optimized loss function.

In conclusion, DelBERTo blends the benefits of the
DeLighT architecture with those of adaptive input and
adaptive softmax to reduce the complexity at training
and inference time. Furthermore, its encoder-only archi-



tecture makes it more suitable for classification tasks and
sequence labeling tasks.

5. Conclusions and Discussion
This paper presents DelBERTo, a transformer architec-
ture with performance comparable to BERT but signif-
icantly lighter. Our comparison with AlBERTo, a state-
of-the-art model for the Italian language, showed that
the performance of the two models on a well-known sen-
timent analysis task on Italian tweets is similar, while
the training time and memory footprint are significantly
reduced.

While the results are promising, we consider these
experiments preliminary. In particular, the hardware re-
sources available at the time constrained our hyperparam-
eter choices; we expect that removing such constraints
will boost performance. Finally, while the present work
focused on the Italian language, DelBERTo is language-
agnostic and can be deployed for tasks other than senti-
ment analysis.
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