

A deep Natural Language Inference predictor in Italian without Italian training data

Authors from Lutech S.p.A. – Data Science Team: Lorenzo Corradi, Alessandro Manenti, Francesca Del Bonifro, Dario Del Sorbo

NLI: logical implication between sentence pairs

Premise (Fact)	Hypothesis (Insight)	Label	
A soccer game with multiple males playing	Some men are playing a sport	ENTAILMENT	
An older and younger man smiling	Two men are smiling and laughing at the cats playing on the floor	NEUTRAL	dataset credits:
A man inspects the uniform of a figure in some East Asian country	The man is sleeping	CONTRADICTION	Stanford NLP

If the hypothesis is inferred from the premise, we may employ **hypothesis** as a **query** for free-text.

The challenge is the absence of language-specific training data

- Our method has NLI capability without labelled data in that language
- We can perform **unsupervised extraction** from free-text

Review (credits: Ġ)	Query for custom info	Label
Un po' fuori mano, proprio come	Prezzo alto	ENTAILMENT
li nome. Pero e un bel locale. Cibo normale, e prezzi un po' alti.	Prezzo basso	CONTRADICTION

Goal: generalize a NLI classifier in a language with no NLI datasets.

We started our work by building an English NLI model

Confidential Lutech©2023

Tests over translated SNLI, MNLI and RTE

Dataset	Task	K Metric	Resu	t Delta*
SNLI (IT) translated w/NLLB	NLI	Accuracy	74.21 9	% -1.83%
SNLI (IT) translated w/NLLB	NLI	Min F1-Sco	re 67.19	% -4.34%
MNLI (IT) translated w/NLLB	NLI	Accuracy	72.749	% +1.09 %
MNLI (IT) translated w/NLLB	NLI	Min F1-Sco	re 64.53	% +0.55 %
Dataset	Task	Metric	Result	Delta
RTE3-ITA	NLI	Accuracy	67.50 %	+4.75%
RTE3-ITA	NLI	Min F1-Score	60.12%	+5.55%

*Delta: performance difference of Knowledge Distillation with another architecture based on Machine Translation.

The architecture **performs better** than fine-tuning over NLI machine-translated dataset.

ABSA problem can be 'mapped' into a NLI task

Premise	Hypothesis	Task	Expected label
Camera piccola ma pulita	Sono soddisfatto	SA	ENTAILMENT
	Parlo di pulizia	TR	ENTAILMENT
	La camera è pulita	ABSA	ENTAILMENT

Neutral label remapped by means of validation set performance maximization:

Model label	Task	Dataset label
NEUTRAL	SA	ENTAILMENT (TRUE)
	TR	ENTAILMENT (TRUE)
	ABSA	CONTRADICTION (FALSE)

By choosing ad-hoc hypotheses, we can search for information from free-text!

Confidential Lutech@

ABSA problem can be 'mapped' into a NLI task

Dataset	Balancing	Task	Metric	Result	Delta
ABSITA	1:1	SA	Accuracy	85.04%	+3.08%
ABSITA	1:1	TR	Accuracy	71.19 %	-3.10%
ABSITA	1:7	TR	Accuracy	65.84%	+6.24%
ABSITA	1:1	ABSA	Accuracy	94.03%	+6.24%
ABSITA	1:15	ABSA	Accuracy	78.42%	+11.39%

*Delta: performance difference of Knowledge Distillation with another architecture based on Machine Translation.

NLI seems to work well to find patterns in free-text!

Confidential Lutech©

Recap and conclusions

- We identified an approach to classify free-text in an unsupervised way using NLI
- We proved **generality of NLI task** by emulating SA, TR, and ABSA
- Surprisingly, **KD** model revealed to be successful

Cheers from BERT!

- We identified an approach to classify free-text in an unsupervised way using NLI
- We proved **generality of NLI task** by emulating SA, TR, and ABSA
- Surprisingly, **KD** model revealed to be successful

Thank you very much for the attention!