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Abstract
The success of recommender systems heavily relies on having access to public datasets. However, there is growing concern
about users’ privacy, which makes the publication of such datasets a challenging task. One potential solution to this issue is to
use differential privacy (DP), a well-established framework for maintaining users’ privacy in machine learning. Nevertheless,
applying DP to release recommendation datasets may negatively impact the performance of the recommender systems,
given the statistical properties of these datasets. To further explore this issue, we aim to investigate the impact of DP on
recommendation performance, considering the dataset characteristics. We draw inspiration from previous studies that
highlight the relationship between data characteristics and recommendation performance. In our research, we propose
using randomized response as a straightforward mechanism for releasing implicit recommendation datasets privately. We
generate over 1800 sub-datasets and build an explanatory framework1 that estimates the performance degradation due to
privatization while considering the dataset characteristics and the privacy budget. Our study provides researchers with
statistically validated and reproducible results and contributes to a deeper understanding of the interplay between data
characteristics and the impact of data privatization on recommender system performance.

1. Introduction
Over the past few years, the issue of privacy has emerged
as a major concern in the context of big data applications.
The general public has become increasingly aware of
the significance of this issue, particularly in the wake of
major data breaches like the one that occurred in 2018 in-
volving Cambridge Analytica. This incident involved the
unauthorized sharing and harvesting of data from numer-
ous users for political campaigning purposes, without
their consent, which has served as a catalyst for height-
ened public scrutiny of data privacy practices.[1]. How-
ever, machine learning and data mining algorithms heav-
ily rely on data pertaining to identity, biometrics, health,
facial recognition, smartphones, transportation and vehi-
cles, and video surveillance, as it serves as their essential
fuel. This includes recommender systems, which are
trained to suggest unexplored items that users are likely
to prefer. When experiencing a recommender system,
users want to receive accurate predictions, while still be-
ing concerned about sharing personal information, rais-
ing the well-known personalization-versus-privacy para-
dox. Numerous studies in the field use robust assurances
of differential privacy [2] to create confidential mod-
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els [3, 4, 5, 6]. This involves the service provider adding
random noise to the model to safeguard the users’ pri-
vacy. In cases where the service provider is not deemed
trustworthy, certain studies suggest utilizing local dif-
ferential privacy in distributed or federated learning set-
tings [7, 8, 9, 10]. Despite their flexibility, differential
privacy techniques are usually applied at the parameter-
or gradient-level, while rarely applied directly in the data
collection or release phase. These aspects are highly
relevant since, even though the data collector applies
anonymization techniques before sharing data with third
parties, privacy violations may still occur [11, 12]. In
the recommender systems domain, the randomized re-
sponse can be conceived as a simple mechanism to pri-
vately release binary datasets. This privacy-preserving
mechanism ensures that users’ true responses to sensitive
questions remain confidential while providing plausible
deniability[13] through a perturbed response returned
with a certain probability. One such approach is RAPPOR,
which uses randomized response to collect binary data
while guaranteeing differential privacy. However, while
public datasets are crucial for recommendation research,
techniques like RAPPOR are rarely used to release such
data. Since recommendation datasets are characterized
by peculiar characteristics such as high levels of sparsity
and skewness, we investigate whether and how mech-
anisms based on the randomized response distort the
dataset, thus differently impacting the recommendation
performance based on the data characteristics. Adomavi-
cius and Zhang [14] demonstrated that a notable relation-
ship between recommender systems performance and
dataset characteristics exists. Based on these findings, we
deem that, when evaluating the effect of randomized re-
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sponse on the recommendation utility, both the amount
of perturbation and the dataset characteristics should
be taken into account. This paper makes a step in this
direction, with a two-fold contribution: (1) we propose a
formalization of a simple randomized-response-based
mechanism for privatizing user data and releasing dif-
ferentially private implicit recommendation datasets; (2)
we perform an extensive explanatory study to system-
atically analyze which dataset characteristics are more
prone to degrade the performance of different recommen-
dation models when randomized response is applied. In
particular, we assess the impact of the original dataset
characteristics and the chosen privacy strength on the
accuracy and popularity bias of four recommendation
models, ranging from unpersonalized to neighborhood-,
autoencoder-, and graph-based models.

2. Background
Differential Privacy. Differential privacy (DP) [2] rep-
resents a formal mathematical definition for quantifying
and limiting information disclosure about individuals.

Definition 1 (𝜖-Differential Privacy ). A randomized
mechanism ℳ ∶ ℕ|𝒳 | → ℛ preserves 𝜖-differential pri-
vacy if given any two adjacent datasets 𝒦1 and 𝒦2 (i.e.,
they differ by only one record), for all 𝒮 ⊆ ℛ:

Pr [ℳ(𝒦1) ∈ 𝒮] ≤ 𝑒𝜖Pr [ℳ(𝒦2) ∈ 𝒮] . (1)

Differential privacy is noteworthy for its ability to
ensure that the results of a function remain consistent
even when a record is removed or altered. This similarity
is dependent on the level of the privacy budget, repre-
sented by the value 𝜖, where lower values correspond
to greater privacy. Typically, a mechanism called ran-
domized mechanism ℳ is used, which involves adding
noise to the function’s output in proportion to its sensi-
tivity (i.e., the largest impact a single record has on the
output) or based on an exponential distribution of a set
of distinct values. As the value of 𝜖 decreases, privacy
increases, but it becomes more challenging to maintain
accuracy with such a mechanism, as smaller values of 𝜖
lead to decreased accuracy.
Randomized Response. Randomized response [15, 16]
is a mechanism that respondents to a survey can use
to protect their privacy when asked about a sensitive
attribute, e.g., «Did you visit Venice?».

Definition 2 (Randomized Response). Let 𝑥 ∈ {𝑥1, ..., 𝑥𝑟}
be the variable containing the answer to a sensitive ques-
tion. The randomized response privatizes the true answer
reporting the value of a variable �̃� instead of 𝑥, based on
the following perturbation matrix P:

P = (
𝑝𝑥1𝑥1 ⋯ 𝑝𝑥1𝑥𝑟
⋮ ⋮ ⋮

𝑝𝑥𝑟𝑥1 ⋯ 𝑝𝑥𝑟𝑥𝑟
) , (2)

where 𝑝𝑢𝑣 = Pr [�̃� = 𝑣 ∣ 𝑥 = 𝑢], for 𝑢, 𝑣 ∈ {𝑥1, … , 𝑥𝑟}.

The intuition behind randomized response is that it
provides plausible deniability. For instance, a response
«Yes» may have been provided because of the true value
or because of the perturbation. In general, randomized
response allows a user to deny an original value 𝑢 when
providing a perturbed value 𝑣. Indeed, denoting ̂𝑝𝑢𝑣 =
Pr [𝑥 = 𝑢 ∣ �̃� = 𝑣], by the Bayes’ formula we have:

̂𝑝𝑢𝑣 =
Pr [�̃� = 𝑣 ∣ 𝑥 = 𝑢] Pr [𝑥 = 𝑢]

∑𝑢′∈{𝑥1,...,𝑥𝑟} Pr [�̃� = 𝑣 ∣ 𝑥 = 𝑢′] Pr [𝑥 = 𝑢′]
. (3)

Therefore, as long as ̂𝑝𝑢𝑣 < 1, a user has a chance
to deny that the true value is 𝑥 = 𝑢 given the released
value �̃� = 𝑣. Given a reported value, the more similar
the probabilities, the higher the deniability. Specifically,
Domingo-Ferrer and Soria-Comas [13] define the denia-
bility in terms of Shannon entropy as:

𝐻(𝑥 ∣ �̃� = 𝑣) = − ∑
𝑢∈{𝑥1,...,𝑥𝑟}

̂𝑝𝑢𝑣 log2 ̂𝑝𝑢𝑣 (4)

whose maximum value is 1, corresponding to the case
̂𝑝𝑢𝑣 = 1/𝑟 for any 𝑢 ∈ {𝑥1, ..., 𝑥𝑟} . This value intuitively

measures how much an attacker is confused about
the true response 𝑥 of a user, when provided with the
perturbed value �̃� = 𝑣.

Connection with Differential Privacy. Randomized
response can be analyzed under the lens of differential
privacy. According to Eq. (1), the ratio of the probabilities
to have the same output given different inputs should
be upper-bounded by 𝑒𝜖. In randomized response, this
corresponds to having the maximum ratio between the
probabilities in the same column of P always bounded
by 𝑒𝜖:

max
𝑣∈{𝑥1,...,𝑥𝑟}

max𝑢∈{𝑥1,...,𝑥𝑟} 𝑝𝑢𝑣
min𝑢∈{𝑥1,...,𝑥𝑟} 𝑝𝑢𝑣

≤ 𝑒𝜖. (5)

3. Privatizing User Data
In the work at hand, we explore and analyze a simple
privatization method for recommendation datasets built
on the pillars of randomized response and differential
privacy. For the sake of simplicity and without loss of
generality, an implicit feedback scenario is considered.
However, randomized response can be extended to any
categorical variable, including explicit ratings, dealing
with them as integer-valued categories. Notably, we
properly apply randomized response to the original
user rating matrix to perturb the private user-item
interactions. This approach guarantees users’ privacy
thanks to the connection with differential privacy.



Randomized Perturbation of User-Item Feedback.
Let X ∈ {0, 1}|𝒰|×|ℐ | be a matrix containing the negative/-
positive feedback of each user in 𝒰 to each item in ℐ.
Each element of the matrix X has to be independently
perturbed, as it inherently represents a private answer
to a different sensitive question, e.g., «Do you like this
restaurant?», and is not affected by the answer to other
questions. Therefore, in the following, we focus on the
perturbation of one feedback of a single user, whose true
value can be either 0 or 1, meaning the user responded
«No» or «Yes» to the sensitive question. Randomized re-
sponse can offer users plausible deniability about their
answers. To this aim, we build a 2 × 2 perturbation ma-
trix P, representing the transition probability of their
feedback from 0 to 1, and vice versa:

P = ( 𝑝00 𝑝01
𝑝10 𝑝11

) . (6)

Assuming that the we build P favoring the true values,
i.e., 𝑝00, 𝑝11 > 0.5, we can write the condition in Eq. (5)
as:

max {
𝑝00
𝑝10

,
𝑝11
𝑝01

} ≤ 𝑒𝜖 (7)

If this inequation holds, the reported value can be re-
leased with limited disclosure of the real value and guar-
anteeing 𝜖-differential privacy. In particular, Wang et al.
[17] prove that, given a fixed of 𝜖, we can satisfy at the
same time 𝜖-differential privacy and maximize 𝑝00 + 𝑝11,
thus avoiding useless perturbations. To get this result,
the perturbation matrix should have the following pat-
tern:

P = (
𝑒𝜖

1+𝑒𝜖
1

1+𝑒𝜖
1

1+𝑒𝜖
𝑒𝜖

1+𝑒𝜖
) . (8)

Plausible Deniability of Feedback. Even though the
value of 𝜖 guarantees differential privacy to a certain ex-
tent, its implications in Eq. (4) should be carefully consid-
ered. By doing so, when releasing randomized data, we
can get an idea of the plausible deniability we guarantee
to our users with respect to their individual interactions.
Indeed, this value strictly depends on the density of the
recommendation dataset, given that it follows the pro-
portion of the true yes/no responses. As an example, in
Figure 1, we show the values of plausible deniability for
the answer 0 (green plot) and for the answer 1 (red plot)
when the recommendation dataset MovieLens 1M is per-
turbed with different 𝜖 values. Along with the average
deniabilities, the plots show both the minimum and the
maximum value over all the sensitive questions. The
sparse nature of MovieLens 1M — and, in general, of all
the recommendation datasets — implies that for a user-
item interaction 𝑥, it holds 𝑃𝑟[𝑥 = 0] ≫ 𝑃𝑟[𝑥 = 1]. Then,
returning 1 makes the attacker very little confused about
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Figure 1: Minimum, maximum, and average plausible denia-
bility for �̃� = 0 (green plot) and �̃� = 1 (red plot) at values of
𝜖.

the original value, especially if it is returned for ques-
tions where this value is usually unexpected (i.e., long-tail
items). However, returning 1 for popular items makes the
attacker highly confused about the true feedback of the
user. This contrast clearly explains the wide width of the
red plot. Returning 0 provides instead higher deniability
when choosing a strong privacy budget (e.g., 𝜖 = 0.5),
given the higher frequency of true 0 values. On the con-
trary, when 𝜖 increases and the privacy constraints are
relaxed, we observe that the plausible deniability falls
both for the responses 0 and 1, but more slowly when
the user responds 1. This is still due to the sparsity of the
dataset: even increasing 𝜖, i.e., decreasing the transition
probability, the large number of 0s still often mutate to
1, thus making the attacker confused about the origin of
the observed 1. Instead, the small number of 1s implies
little transitions to 0 when increasing 𝜖, thus making the
attacker quite sure that an observed 0 comes from a true
0.

4. Explanatory Analysis
A higher privacy level obtained with noise injection, e.g.,
with the randomized response, necessarily causes inher-
ent performance degradation of the recommendation
algorithm using the noisy data. Inspired by Adomavicius
and Zhang [14], we realize a regression model to analyze
which dataset characteristics are more prone to influence
the outcome of different recommendation models when
the randomized response is applied to the original dataset,
as proposed in Section 3. Notably, if a recommendation
model performs 𝜇 on a dataset X for a specific metric, we
argue that a perturbed dataset X̃ with 𝜖-differential pri-
vacy causes a degradation of the performance Δ𝜇, which
we estimate as:

Δ𝜇(X, 𝜖) = 𝜃0 +∑
𝑖∈𝒞

𝜃𝑖𝑔𝑖(X) + 𝜃𝜖𝜖, (9)

where 𝒞 is the set of the selected statistical characteris-
tics, and the 𝑔𝑖(X)’s represent the same characteristics



Table 1
Results of the explanatory model on three datasets: Movielens 1M (ML1M), Amazon Digital Music (ADM), and Library Thing
(LT). The cells report the weights, 𝑝-values and the 𝑅2 of the model.

ΔPrecision@10 ΔARP@10
ML1M ADM LT ML1M ADM LT

MostPop

𝑅2 0.82979 0.56968 0.54467 0.88818 0.91515 0.90205
𝜃SpaceSize -0.64251*** -0.39873*** -0.6265*** 0.22146*** -0.82756*** -0.57115***
𝜃Shape -0.19213*** 0.73963*** 0.15363** -0.08774*** 0.18594*** 0.20732***
𝜃UserRatings 0.69568*** 0.28625*** 0.18444*** 0.06276** 0.22991*** 0.22402***
𝜃ItemRatings 0.31384*** -0.14931 -0.11729 -0.87571*** -0.17379*** -0.54339***
𝜃ItemGini -0.02678 0.47820*** 0.47271*** -0.00986 0.00370 0.09399***
𝜃𝜖 -0.78355*** -0.07379*** -0.59126*** 0.49497*** 0.40423*** 0.46219***

ItemKNN

𝑅2 0.94533 0.46682 0.55700 0.93794 0.91163 0.91563
𝜃SpaceSize 0.25873*** -0.16068*** 0.51065*** -0.2053*** -0.79519*** -0.48621***
𝜃Shape -0.00830 -1.31884*** 0.07239 -0.03561** 0.23152*** 0.2711***
𝜃UserRatings 0.64500*** -0.74571*** 0.25576*** 0.13604*** 0.26218*** 0.20821***
𝜃ItemRatings -0.12319*** 0.50660*** 0.50000 -0.77877*** -0.21905*** -0.64315***
𝜃ItemGini 0.11027*** 0.63739*** -0.05162 0.05531*** -0.00743 0.06457***
𝜃𝜖 -0.45170*** -0.05388** -0.35984*** 0.37732*** 0.39550*** 0.42191***

EASER

𝑅2 0.86210 0.52585 0.67834 0.88996 0.92051 0.90981
𝜃SpaceSize -0.53847*** -0.14922*** -0.31296*** 0.21301*** -0.82758*** -0.57363***
𝜃Shape -0.20757*** -1.42374*** -0.47790*** -0.08559*** 0.18872*** 0.20678***
𝜃UserRatings 0.76275*** -0.79616*** 0.36638*** 0.06738** 0.23271*** 0.22056***
𝜃ItemRatings 0.30958*** 0.81163*** 0.47182*** -0.88313*** -0.18788*** -0.54813***
𝜃ItemGini -0.04132** 0.39370*** 0.36040*** -0.00571 0.00419 0.08408***
𝜃𝜖 -0.73270*** -0.08127*** -0.46949*** 0.48379*** 0.39152*** 0.44191***

RP3𝛽

𝑅2 0.93757 0.54796 0.74282 0.91886 0.90823 0.91086
𝜃SpaceSize 0.23621*** -0.11209** -0.04328 -0.12050** -0.81584*** -0.52753***
𝜃Shape -0.02467* -1.40264*** -0.37873*** -0.0646*** 0.21221*** 0.24107***
𝜃UserRatings 0.65072*** -0.75766*** 0.35893*** 0.12073*** 0.25509*** 0.21959***
𝜃ItemRatings -0.05555* 0.72418*** 0.47977*** -0.78237*** -0.23406*** -0.59419***
𝜃ItemGini 0.00136 0.43725*** 0.19951*** 0.03231** 0.02788 0.06346***
𝜃𝜖 -0.49532*** -0.04955** -0.37098*** 0.40914*** 0.38137*** 0.42439***

***𝑝 ≤ .001, ** 𝑝 ≤ 0.01, *𝑝 ≤ 0.05

measured on the original dataset X. The regression
model has been computed with the ordinary least
squares method based on 𝑚 sub-datasets X1, X2, …, X𝑚,
which have been randomly subsampled from a bigger
dataset following the sampling procedure proposed
in [14]. Each sub-dataset is used for (i) training a
recommendation model, then (ii) perturbed and used to
(iii) re-train the recommendation model and (iv) estimate
the performance degradation.

Dataset Characteristics. To build the regression
model, we choose a subset of the recommenda-
tion dataset characteristics adopted in [18], namely
𝒞 = {SpaceSize, Shape,UserRatings, ItemRatings,
ItemGini}. We denote with 𝒰 the set of users in X, with
ℐ the set of items, and with ℛ the set of positive ratings.

Structure of the user rating matrix. We select four
properties related to the structure of the rating matrix X.
The first one indicates the maximum number of prefer-
ences that can be collected in X:

𝑔SpaceSize(X) = |𝒰| ⋅ |ℐ |, (10)

The second characteristic denotes if there are more can-
didate neighbor users than candidate neighbor items
(𝑔Shape ≫ 0.001) or the opposite scenario (𝑔Shape ≪
0.001):

𝑔Shape(X) =
|𝒰|

|ℐ | ∗ 1000
, (11)

Finally, the last two characteristics are measured as fol-
lows:

𝑔UserRatings(X) =
|ℛ|
|𝒰|

and 𝑔ItemRatings(X) =
|ℛ|
|ℐ |

.

(12)
Intuitively, UserRatings measures how active the users
are in the system while ItemRatings relates to how long-
tail items compare to popular ones.

Rating and feedback frequency. Ratings and feed-
back are usually distributed over catalog items following
the well-known long-tail distribution, with a small num-
ber of items being highly popular. Examining this charac-
teristic helps in understanding how biased the algorithms



could be toward popular items:

𝑔ItemGini(X) = 1 − 2
|ℐ |
∑
𝑖=1

|ℐ | + 1 − 𝑖
|ℐ | + 1

×
|ℛ𝑖|
|ℛ|

(13)

where |ℛ𝑖| is the number of ratings in X associated
with item 𝑖. ItemGini coefficient measures the rating
frequency distribution for items. A value 𝑔ItemGini = 0
represents the situation where all the items got the same
number of ratings while ItemGini = 1 indicates that
only one item received all the ratings.

Experimental Protocol. In order to cover a wide
range of values for each characteristic, we sampled 600
random sub-datasets1 from three well-known datasets:
MovieLens 1M [19], Amazon Digital Music, and Library-
Thing2. Each of the 1800 generated sub-datasets was
privatized using the randomized response applied with
three different 𝜖 values (3, 2, and 0.5). The resulting 7200
datasets have been used to train four recommendation
models, under different approaches: popularity-based
(MostPop), distance-based (ItemKNN [20]), autoen-
coder (EASER [21]), and graph (RP3𝛽 [22]). The
explanatory model (see Eq. (9)) is trained on 28,800
experiments to analyze the variation of accuracy and
popularity bias with respect to the characteristics of
the non-privatized datasets. The popular Precision
and Average Recommendation Popularity (ARP) [23]
metrics have been calculated on the top-10 recommenda-
tion lists. The regression variables have been normalized.

Discussion. Table 1 reports the learned coefficients of
the regressionmodel. Each coefficient represents the rela-
tionship between the data characteristic and the variation
of accuracy and popularity bias in the recommendation.
Higher values of the regressor 𝑅2 indicate that the set
of variables can explain the variation of the target vari-
able. Conversely, for each model-variable-characteristic
combination, the model weight expresses the importance
and direction of the relationship, i.e., direct or inverse.
Higher values entail higher variations in the target metric,
while the higher the delta, the greater the performance
degradation. For completeness, a degradation of preci-
sion implies a lower accuracy, and a degradation of ARP
stands for a more downward popularity bias. Finally, the
𝑝-values reported with the stars notation indicate when
the result is statistically significant. When considering
the variation of precision, the regression model can explain
the 89% of the variation for MovieLens 1M, the 53% for
Amazon Digital Music, and 63% for LibraryThing, along
with the four models. Even higher when considering ARP,
with 91% for MovieLens 1M, Amazon Digital Music, and

1Their densities were forced within [0.0007, 0.04] to ensure realistic
values.

2https://cseweb.ucsd.edu/~jmcauley/datasets.html

LibraryThing on average. This demonstrates that the se-
lected six characteristics effectively explain the variation
of performance.

It is worth noticing that the explanatory capabilities
seem to depend more on the dataset choice than on the
recommender model. Indeed, the lowest values of 𝑅2 are
found for the Amazon Digital Music dataset. Conversely,
MovieLens 1M characteristics are very informative. This
could relate to the substantial difference in data sparsity:
a higher relative number of interactions inMovieLens 1M
could help the regressor unveil hidden relationships. The
privacy budget 𝜖 has a key role in the explanatory model:
its decrease is always related to a worsening of accuracy
and an increase in popularity bias. Indeed, small 𝜖 values,
i.e., strong anonymization of the dataset, tend to preserve
popular items. The finding is confirmed by the statisti-
cal hypothesis tests. Furthermore, the dataset SpaceSize
shows an inverse dependency on the degradation of ac-
curacy. Differently from 𝜖, it shows an inverse relation-
ship with ARP. The larger the SpaceSize, the lower the
probability of returning a popular item in the random-
ized dataset. For UserRatings and ItemRatings, they re-
spectively have a negative and a positive impact on the
increase of the popularity bias. A higher ItemRatings
makes the dataset more affected by popular items and
the randomized response reinforces this behavior. On
the contrary, a high UserRatings drives the dataset to
be less affected by cold users, whose recommendations
are strongly influenced by bias. Finally, the results for
Shape and ItemGini are largely statistically significant
and show the ability to explain both the accuracy and
the popularity bias variations.

5. Conclusion and Future Work
This study has extensively analyzed which dataset char-
acteristics are more prone to influence the accuracy
and popularity bias of different recommendation mod-
els when randomized response is applied to the original
dataset. Under the lens of plausible deniability, privacy
budget, and explanatory modeling, this investigation has
unveiled several insights and provided interesting sug-
gestions to the researcher interested in protecting users’
privacy. However, the relationship between dataset char-
acteristics across different datasets deserves further at-
tention. Future studies could unveil these aspects and
extend our analysis considering the effects of applying
other differential privacy techniques.
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