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Abstract
We introduce a computational method for form-finding and shape optimization of triangle-tessellated grid shells, kinds of 3D
frame structures to be used as roofs and façades. The design of shapes has become an easy task after the advent of software
tools, however obtaining good structural performance is still difficult. Form-finding and shape optimization techniques are
hence employed to enhance system efficiency and material savings. We perform shape alterations by improving the structural
configuration, while the alterations are slight enough to preserve the original aesthetic intents. We employ an attention graph
neural network model that learns optimal displacements of the nodal coordinates with a target goal of reducing a statics-based
loss, and it manages complex shapes and irregular tessellations successfully. The learning model is assessed by discussing the
sensitivity of results towards the input features. Then, a variety of examples is provided to prove the effectiveness of our
method, even in comparison with some classical form-finding tools which are not based on neural networks. The results show
how our method overcomes the classical form-finding tools in terms of geometry preservation, on both the inner surface and
the boundary.
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1. Introduction
Developing methods to assess the architectural feasibility
of free-form surfaces is a strong necessity, considered the
increasing power of the available computational means
to support shape modeling. If surfaces are more andmore
complicated on one side, fabrication issues pose increas-
ingly hard challenges on the other side. Indeed, a shape
is made buildable only when appropriate structural con-
straints are satisfied: statics, lighting, space requirements,
costs, economy of materials and sustainability.

Geometry, which has a crucial role in finding aestheti-
cally pleasing surfaces, is also the key to fix many feasibil-
ity issues. The discipline of architectural geometry [1] has
emerged to give prominence to geometric solutions of
fabrication problems. Contributions in the field are vari-
ous, from paneling to equilibrium problems, and a broad
amount of knowledge from mathematics and computer
science is involved. The state of the art features a wide
employment of discrete differential geometry, numerical
analysis and optimization [2], while artificial intelligence
and deep learning found less space to date, especially
for what concerns 3D data. Considering the number of
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improvements the artificial intelligence made in several
and different contexts, the expectation on results is high
even in this field.

In this work, we leverage on graph attention neural
networkmodels to perform statics-driven shapemodifica-
tion on grid shells (Figure 1). Grid shells are architectural
mesh structures made of beams which are jointed at the
nodes, the beams support the whole amount of the struc-
tural load. The neural network inputs an original grid
shell concept and decides the optimal shape by providing
translation vectors yielding nodal displacements. The
shape modification ensures a better inner force configu-
ration and consequently a reduction of the global strain
energy, while the boundary prescriptions and the visual
aspect of the original concept are preserved.

Commonmachine learning approaches usually require
a huge volume of pre-solved examples in order to gen-
eralize the solution of the task on new data. However,
solving a single shape modification instance manually
takes time and the necessity of finding the suitable exper-
tise, with the non-uniqueness of ground truth in terms
of design preservation. A problem which is hard to solve
and a field, the architecture, which lacks on the public
availability of digitized 3D shapes drove us to follow a
dataset-free approach. The neural network learns the
optimal nodal displacements for a given input shape after
an iterative procedure based on the shape itself, the mean
strain energy of the grid shell is expressed as a differen-
tiable function from which we backpropagate to update
the network weights. The backpropagation is performed
through the automatic differentiation and the gradient
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Figure 1: (a) We feed our 3D deep learning tool with an input grid shell free-form, provided as a triangular mesh. (b) The
deformation the input would undergo as a consequence of Service Load. Euclidean norm of deformation is color mapped and
expressed in meters with frequency histograms per node. (c) The output optimized grid-shell, preserving the original aesthetic
while deformation is strongly reduced (d).

descent procedure is stopped after that the loss converges
to a minimum.

Automatic differentiation (AD) is a way to evaluate
derivatives which is often used in neural network train-
ing. It is preciser than numeric finite differences and
faster than symbolic computations. AD keeps track of
the computational graph of a given query function and it
provides the evaluation of the derivative at a given point
by visiting the computational graph backwards. The
answer is assembled through the differentiation chain
rule, knowing how to compute the derivatives of all the
elementary operations involved. Beyond machine learn-
ing, AD is also employed in different architectural design
problems: topology optimization [3], optimization of
shells through NURBS (Non-Uniform Rational B-Splines)
control structures [4], and in the context of CEM (Com-
binatorial Equilibrium Model) [5]. Neverthless, these
contributions take into account simpler structures with
less degrees of freedom, never employing full neural net-
work models [6].

Our shape modification task fits the context of two
important problems in architecture: form-finding and
shape optimization. Form-finding aims at static optimal-
ity starting from the shape assumed by hanging mem-
branes under the action of load. This approach, which
is historically employed by famous designers like Gaudi
and Isler, is overcomed by shape optmization in modern
research. Instead of starting from a membrane, shape
optimization leverages on genetic algorithms or gradient-
based approaches to give static-awareness to reference
shapes provided as input. Widely used software tools are
based on both form-finding [7, 8] and shape optimization
[9, 10, 11].

Our tool relies on the extensive knowledge from ge-
ometric deep learning [12]: convolution notions from
machine learning on images are extended on more com-
plex and structured input data like graphs and three-
dimensional objects. While the convolution on 2D aggre-

gates information via kernels on the neighboring pixels,
switching on 3D means to rethink which the equivalent
of pixels is, and how neighbors are defined. Dataset-free
approaches and single instance learning are not new in
literature [13], even if this paradigm is less considered.

In Section 2 we develop some more details about the
method, while in Section 3 we report the settings of the
experiments and we provide some results, showing how
our tool meets the expectations both in terms of static-
awareness and design preservation.

2. Methods
Figure 2 shows how our method works. The most natural
data representation for a triangle-tessellated grid shell is
a meshℳ = (𝑉 , 𝐸, 𝐹 ), where 𝑉 are the vertices, 𝐸 ⊆ 𝑉 ×𝑉
are the edges and 𝐹 ⊆ 𝑉 × 𝑉 × 𝑉 are the faces. The
structural nodes of the grid shell are identified with the
mesh vertices and the beams are identified with the mesh
edges.

We consider mean strain energy

ℒ(ℳ) = 1
|𝐸|

∑
𝑒∈𝐸

𝑆𝑒, (1)

where 𝑆𝑒 are per edge energies. More information about
𝑆𝑒 definition and computation can be found on Section
2.3. If 𝑇𝜃 is the neural model depending on a set of learn-
able parameters 𝜃, our shape modification task can be
formalized as follows: we search for an optimal mesh

ℳ∗ ∶= 𝑇𝜃(ℳ)

such that
𝜃∗ ∈ argmin𝜃ℒ(𝑇𝜃(𝑀)). (2)

A subset of the boundary vertices 𝜕𝑉 ⊆ 𝜕𝑉, usually the
ones placed on the ground, is kept fixed while the model
is free to displace the remainder vertices in 𝜕𝑉 ⧵ 𝜕𝑉
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Figure 2: The pipeline of the tool. The input 3D mesh is encoded through a set of intrinsic and extrinsic geometric input
features (vertex coordinates, normals, curvature, geodesic distances and centrality measures) and fed to the 3D deep learning
network. The network is made of three modules: a feature encoder (Enc), four attention layers (GAT) and a readout function
(RO) which outputs the nodal displacements. Network weights are updated according to gradients of a loss function based on
edge mean strain energy, updates are repeated until the loss converges and the last iteration output is the inferred shape.

2.1. Input features
We select three clusters of input features for each vertex
v ∈ 𝑉 (base, geometric and geodesic) so that each vertex is
fed to the network through an input feature vector xv ∈
ℝ12. Input features are selected among the quantities
shown to have relevance in the architectural geometry
context.
Base features are vertex coordinates v ∈ ℝ3 and ver-

tex normals n(v) ∈ ℝ3. These features are referred as
base because are traditionally employed in 3D learning
applications, [14].
Curvature features are the principal curvatures 𝜅1(v),

𝜅2(v). Curvatures and their variation are related to the
distribution of the structure inner forces. Indeed, when
the external load can be commuted into planar inner
forces structural efficiency is reached.

Geodesic features relate local information to global in-
formation giving the relative position of vertices in the
whole shape. We consider the distance 𝑑(v, 𝜕𝑉 ) of ver-
tices from the set 𝜕𝑉 of boundary vertices and the distance
𝑑(v, 𝜕𝑉) from the set 𝜕𝑉 of fixed boundary vertices. We
recall that

𝑑(v, 𝑋 ) ∶= min{𝑑(v,w) | w ∈ 𝑋},

where 𝑑(v,w) is the geodesic distance between two
mesh vertices, i.e. the length of the shortest edge path
connecting them. We also consider centrality measures
𝒞𝜕𝑉(v) and 𝒞𝜕𝑉(v), where the centrality of a vertex v to
a set 𝑋 is

𝒞𝑋(v) ∶= ∑
w∈𝑋

𝑑(v,w).

Each feature cluster (having dimension 𝑛𝑖, 𝑖 = 1, 2, 3)
is mapped to 256 channels through the encoding

h𝑖,𝜃(x) ∶= tanh(𝑊𝑖,𝜃x + b,𝜃)

with 𝑊𝑖,𝜃 ∈ ℝ256×𝑛𝑖 and b𝜃𝑖 ∈ ℝ256; the activation is hy-
perbolic tangent in order to bind mapped features in the
interval (−1, 1).

The input feature vector xv ∈ ℝ12 is encoded to x𝑒𝑛𝑐v ∈
ℝ768, this last is then fed to a sequence of four GATv2
[15] attention layers. GATv2 layers process the 𝑘-nearest
neighbor graphs built on the vertex feature spaces with
the Euclidean metric.

2.2. Learning model
The deep learning model architecture is shown in Fig-
ure 3. In the previous Section we showed how the input
features are selected and encoded, we now consider the
GATv2 attention layers. We denote xℓv the input features
of the layer ℓ for ℓ = 1, … , 4, x1v = x𝑒𝑛𝑐v by construction.
Each layer has its own nearest neighbor graph structure
induced by the Euclidean distance on the correspond-
ing feature space: we denote with 𝒩v the set of all the
neighbors of the vertex v ∈ 𝑉. GATv2 layers transform
feature vectors according to learned weighted means on
the neighborhoods, namely

xℓ+1v ∶= 𝛼vv𝑊𝜃xℓv + ∑
w∈𝒩v

𝛼vw𝑊𝜃xℓw. (3)

𝑊𝜃 and a𝜃 are arrays of learnable parameters which allow
to compute the weights

𝛼vw ∶=
exp (a𝑇𝜃𝜙 (𝑊𝜃 (xv || xw)))

∑w∈𝒩v∪{v} exp (a
𝑇
𝜃𝜙 (𝑊𝜃 (xv || xw)))

(4)

and 𝜙 is a leaky ReLU activation function.
We chain the four 256-dimensional GATv2 outputs to

produce a deep feature vector x̃v and the final displace-
ment for the vertex v is 𝛿v ∶= k𝜃(x̃v), where k𝜃 is the
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Figure 3: Here is how the learning model works. The feature vector xv is encoded in x𝑒𝑛𝑐v , which is subsequently fed to four
GATv2 layers to get a deep vector x̃v after layer output concatenation. Finally, a multilayer perceptron plays the role of a
readout map to produce vertex displacements 𝛿v from the deep vectors.

readout function implemented as a multilayer perceptron,
shared on the whole mesh.

2.3. Loss and boundary constraints
We perform gradient-based optimization on the loss func-
tion

ℒ + 𝜁ℬ,

where ℒ is the mean strain energy defined on Equation
1, ℬ is a penalty term to ensure that the boundary fixed
vertices in 𝜕𝑉 have no displacement, and 𝜁 is a weighting
factor. 𝜁 is set at the first iteration according to the values
ofℒ andℬ so that 𝜁ℬ is the 30% ofℒ. A universal value
for 𝜁 cannot be found due to the order of magnitude of
ℒ that changes with the scale of the grid shell structure.

The implementation for ℒ is written in PyTorch [16].
We adopt a smart, tensor-based approach to compute
all the 𝑆𝑒 from Equation 1 in parallel, to make the com-
putation profitable to be run on GPUs. If we consider
beam local frames {x𝑒,y𝑒, z𝑒}, each beam is subjected to
six stress components: axial elongation and torsion along
x𝑒, and transverse bending and shear along planes {x𝑒,y𝑒}
and {x𝑒, z𝑒} [17]. The beam energy 𝑆𝑒 is a sum over the
six components contributions, and it is computed after
a coordinate change to the observer’s reference system
and back.

The penalty term ℬ is just the sum of the Euclidean
norms of the displacements outputted by the network
model for the vertices in 𝜕𝑉, namely

ℬ ∶= 1
|𝜕𝑉|

∑
v∈𝑉

||𝛿v||. (5)

After the last training iteration, at inference time, ℬ
is so small that the displacements for 𝜕𝑉 can be set to
zero without consequences to the shape and the static
analysis.

3. Settings and Results
In this section we briefly summarize the considerations
we made after the assessment of our learning model on
fifteen different free-forms. Some examples and the most
relevant considerations are reported, focusing on param-
eter settings, iteration times, sensitivity to the geometric
input features and comparisons with other form-finding
tools.

Gradient based optimization is performed via Stochas-
tic Gradient Descent (SGD), momentum is set to 0.9, learn-
ing rate is changed according to the scale of the input
shell. More precisely, we consider structures with beam
cross section radius of 0.017 𝑚 at a learning rate of 0.01
and structures with cross section radius of 0.08 𝑚 at a
learning rate of 0.0005. Loading of 3 𝑘𝑁/𝑚2 is vertical, in
the gravity direction, and is distributed on the nodes by
tributary area. The weight of the beams is then included
as a extra lumped load, assuming the material density as
78.5𝑘𝑁/𝑚3.

We test our method on a Microsoft Windows® 10 Pro
machine with a i7-6700K CPU, 32 GB of RAM, a NVIDIA
GeForce GTX 1080 GPU with 8 GB of dedicated mem-
ory. Loss and iteration times are reasonable, and the
advantage of loss computing on GPUs rather than CPUs
is noticeable. For example, in the instance of Figure 4
mean differentiation time over iterations is 0.128 seconds
on GPU against 1.02 seconds on CPU.

3.1. Role of features and attention
We discovered the relevance of feature clusters and atten-
tions by observing how the output changes if we remove
the given cluster or we change the Graph Neural Network
paradigm. More in detail, we assess the role of attention
mechanisms by comparing GATv2 with the plain graph
edge convolution (DGCNN, [18]).
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Figure 4: Comparison of results from our model and form-finding tools for similar strain energy.
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Figure 5: The results with attention layers (middle) and with
simple dynamic edge convolution (left). Color mapping refer
to the vertex displacements of the model outputs from the
input. Attention layers offer better shape preservation with
similar static performance. Models: Gopher, learning rate
0.1, 200 SGD iterations; Wave, learning rate 0.01, 200 SGD
iterations.

For what concerns geometric features, the use of curva-
tures is related to a reduced Hausdorff distance between
the input shape and the output, for similar strain energy
configurations. This is a good indicator of a lesser shape
modification which is preferable in terms of shape design
preservation intents.

Geodesic features are instead related to a greater
shape fairness, together with a faster convergence of
the method and smoother loss descent curves.

The advantage of attention mechanism over the edge
convolution is on the lesser triviality of the produced
shapes. The outputs from the DGCNN cases are often
pulled-up version of the inputs (Figure 5). If adding ma-

terial reduces strain energy on one side it increases the
norms of displacements on the other side, not preserving
hence the original design intent.

3.2. Comparison with other form-finding
tools

We compare our model outputs with two popular form-
finding tools, Karamba [19] and Kangaroo [20]. These
two approaches are different in terms of both the method
and the parameters the user can control. In order to
do a fair comparison with our model we generate some
form-finding instances and we select the ones with sim-
ilar energy configuration with respect to ours. A full
overview is shown in Figure 4.

Our model better performs in terms of shape preser-
vation, both the form-finding tools alter free boundaries
(made of 𝜕𝑉 ⧵ 𝜕𝑉 vertices) and design traits like creases
or spikes. This phenomenon, which is noticeable in
Karamba, is even bigger with Kangaroo.

4. Conclusions
We develop a 3D geometric deep learning method which
performs well on both form-finding and shape optimiza-
tion tasks. The advantages with the other state-of-the-art
tools are a lesser number of tunable parameters and an
enhanced performance in terms of design preservation.



Possible future work is in the direction of learning rate
adaptivity, not only with respect to the input model scale
but also with respect some design-related user requests.
Morevorer, suitable topological descriptors [21] can be
exploited as sophisticated regularizers to achieve even
finer results in terms of shape preservation.
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