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Abstract
In this work, we present a simple and effective way to obtain efficient no-reference metrics by using a simple strategy to
transfer the knowledge of well-known and respected reference metrics into no-reference metrics that work on the GPU. In
our work, we show that a simple neural network is sufficient to transfer knowledge and it is effective.
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Figure 1: The network architecture of NoR-VDPNet e NoR-
VDPNet++.

1. Introduction
Objective image quality metrics are extremely important
to evaluate the quality of modern imaging algorithms
such as deblurring, colorization, super-resolution, denois-
ing, etc.
A widely used metric for both Standard Dynamic

Range (SDR or 8-bit) content and High Dynamic Range
(HDR) images and videos is HDR-VDP[1]. This metric
is a reference-based metric that mimics how the human
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visual system behaves at different stimuli. Although this
metric produces high-quality results it has two main
issues: i) it requires a reference which is not always
available; ii) it is MATLAB only and it requires a lot of
computational time for HD or 4K content.

Figure 2: A training dataset is generated by processing
ground truth and distorted images using a reference met-
ric. Then, the training sample for our NoR-VDPNet or NoR-
VDPNet++ is composed of the distorted image only and the
quality value is computed by the metric.

In this work, we present NoR-VDPNet [2] and NoR-
VDPNet++ [3] two metrics that transfer the knowledge
of HDR-VDP into a simple CNN metric to achieve no-
reference metrics for both SDR and HDR content.

2. Method
NoR-VDPNet and NoR-VDPNet++ use a simple neu-
ral network architecture composed of different convo-
lutional layers with max-pooling; see Figure 1. The
difference between the two architectures is that NoR-
VDPNet++ introduces the use of normalization. However,
from early experiments[3], we found out that BatchNor-
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Figure 3: The histogram of the error between the prediction
and the ground truth for the test datasets for our tasks (HDR-
C and SDR-D): On the top left, the results of NoR-VDPNet
for the HDR-C task. On the top right, are the results of NoR-
VDPNet++ for the HDR-C task. On the bottom left, are the
results of NoR-VDPNet for the SDR-D task. On the bottom
right, are the results of NoR-VDPNet++ for the SDR-D task.

malization [4] and Residuals are not effective. We found
out that ReZero [5] is the most computationally efficient
and effective mechanism for our task.

We collected a medium-small dataset of SDR and HDR
images and their relative distortions for which we com-
puted HDR-VDP quality values; see Figure 2 for training
generation. In particular, we tested our metric for two
specific tasks:

• SDR-D: SDR distortions such as blur, noise, quan-
tization, jpeg, etc.

• HDR-C: HDR compression using JPEG-XT stan-
dard1.

Table 1 reports more information about our dataset.

Dataset Training Validation Test Total
SDR-D 80,244 10,025 10,044 100,313
HDR-C 49,602 6,216 6,216 62,034

Table 1
The employed datasets for two tasks.

3. Results
We implemented our architectures using PyTorch. We
trained and tested both on an NVIDIA DGX Server em-
ploying a single NVIDIA A100 GPU with 40 GB of mem-
ory (CUDA 11.3).

Figure 3 shows our results for the test datasets for both
SDR-D andHDR-C.We can notice that both NoR-VDPNet
and NoR-VDPNet++ achieve a low error; note that Hanji
et al.[6] showed that there are perceptual differences
when the difference error is greater than 0.075 for inverse

1https://jpeg.org/jpegxt/

tone mapping tasks. Overall NoR-VDPNet++ provides a
better advantage in terms of resulting quality.
In terms of computational efficiency, both NoR-

VDPNet and NoR-VDPNet++ can process 8-Mpixel im-
ages in less than 0.05 seconds; i.e., they achieve real-time
performance.

4. Conclusions
In conclusion, we have presented an efficient architec-
ture for converting computationally expensive reference
metrics into computationally efficient metrics that work
without the need for a reference. This is very handywhen
it comes to assessing the image quality of live streams
such as sports or other events.
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