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Noise and Non-stationarity in Financial Machine Learning

Financial Machine Learning [2] differs from standard ML ap-
plications in many aspects, and in particular:

1. Financial asset prices are non-stationary time-series,
and differencing does not fully address the problem:

• Asset returns are (negatively) autocorrelated and
heteroscedastic, exhibiting volatility clusters

• Their distribution is non-Gaussian, with large kur-
tosis ("fat-tails")

2. Financial asset prices/returns exhibit a very poor signal-
to-noise ratio, exposing ML models to overfitting.

• E.g. Mean Hurst Exponent of daily S&P 500 clos-
ing price is around 0.54 (yearly lag).

Example: S&P 500 Index
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Learning with Noisy Labels

Data come from a noisy distribution D̃ = {(xi , ỹi )}N
i=1, with

Ỹ being the noisy label space
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Problem formulation and Experiments

PROBLEM: Samples from the noisy label space Ỹ are stored inside the buffer M
• Exploit small-loss criterion [3] to identify clean and

noisy examples

• Fill the replay memory M with the clean examples only,
selected via Gaussian Mixture Model (GMM) or Oracle
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Method Split-N-CIFAR-10

Noise rate (symmetric) 0% 20% 40% 60%

Multitask 91.69 82.02 72.04 54.83
Finetuning 19.66 18.83 18.02 15.99

ER-ACE [1] 71.15 53.82 37.43 22.87
ER-ACE w/ Oracle - 51.10 39.06 23.57
ER-ACE w/ GMM (OURS) - 52.90 37.95 24.93

Table 1: Final Average Accuracy [↑] of ER with Asymmetric
Cross Entropy (ER-ACE) combined with two different techniques
to identify noisy samples and prevent storing them inside the
memory buffer; comparison with some baseline methods.

Continual Learning
• Learning from a sequence of tasks {D1, ... ,DT}
• Experience Replay (ER): train with current data stream Dt and

a buffer M of past data

θ∗ = arg min
θ

E
(x,ỹ )∼Dt

[
L(f (x), ỹ )

]
+LR

LR = E
(xr ,ỹr )∼M

[
L(fθ(xr ), ỹr )

]
train

rehearse
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