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Abstract
Consumer electronic devices such as smartphones, TV sets, etc. are designed around printed circuit boards (PCBs) with a
large number of surface mounted components. The pick and place machine soldering these components on the PCB may
pick the wrong component, may solder the component in the wrong position or fail to solder it at all. Therefore, Automated
Optical Inspection (AOI) is essential to detect the above defects even prior to electric tests. In this context, we leverage YOLO,
a deep convolutional architecture designed for one-shot object detection, for AOI of PCBs. This architecture enables real-time
processing of large images and can be trained end-to-end. We report here our experimental setup and some preliminary
performance measures.
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1. Introduction
Consumer electronic devices such as mobiles, TV sets, etc
are usually designed around one or more Printed Circuit
Boards (PCBs) that are populated by automatic pick and
place machine. Such robots may however fail in soldering
a component in the right place, or the joints may be
misaligned with respect to the pads, or the component
may be installed in the wrong orientation, etc. Therefore,
before an electric tests are performed, a visual inspection
of the PCB is required to rule out glitches like those
described above. 1

The large amount of components typically populating
a modern PCB calls for highly automated, high through-
put, optical inspection procedures. Traditional PCB opti-
cal testing procedures require a camera to be driven over
each component according to the PCB schematics, taking
a shot of the component, analyze the shot and repeat
for each component. The throughput of this workflow
(i.e. the number of PCBs processed over time) is limited
by i) the momentum of the moving part (the camera or
the PCB) during image acquisition ii) the speed of the
computer vision algorithm processing the image.
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This work proposes a one-shot optical inspection
method for fault detection in PCBs. In detail, our goal is
to detect from a single high resolution shot of an entire
PCB i) missing components and ii) misplaced or wrong
component types. We recasted our fault detection task
into an object (the soldered components) detection and
classification problem. We rely on a YOLO (You Only
Look Once), a deep neural network based one-shot object
detector suitable for low latency operations and trainable
end-to-end. YOLO requires however large amounts of
labeled data, so the first challenge we undertook was cre-
ating a sufficiently large training set of annotated whole
PCB images from single component crops such as that
in Figure 1. To obtain a robust component detector, we
collected training images from different PCBs under dif-
ferent illumination conditions. We experimented with
a leave-one-out approach where one board was in turn
kept out of the training set and used for evaluation. Our
preliminary experimental results show good component
recognition accuracy especially for very popular classes
of components, with headroom for further improvement
as the training set grows larger.

2. Background
Deep convolutional object detection models can be
grouped into two classes [1]: two-stage detectors such as
the R-CNN family of architectures [2, 3, 4] and one-stage
detectors.

YOLO (You Only Look Once) [5] is a one-stage detector
relying on a deep convolutional feature extractor that is
able to predict multiple bounding boxes and class proba-
bilities for those boxes directly from full images in one
evaluation. Using the whole image to make predictions,
YOLO implicitly encodes contextual information about
classes as well as their appearance. This allows it to learn
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Figure 1: Example of the original 1278x958 training images
we were provided: the component at the center of the image is
annotated with type (Resistor) and case size (6x3 millimiters).

generalizable representations of objects.
In order to simultaneously predict bounding boxes and

class probabilities, YOLO divides the input image in a
grid of 𝑆 × 𝑆 cells, where each cell is responsible for
the prediction of the object whose center falls within the
cell. Each grid cell predicts B bounding boxes, and each
bounding box consists of 5 predictions: x, y, w, h, and
confidence. The coordinates of the box are represented
by the predicted values of (x, y) for the center of the box,
which is relative to the bounds of the grid cell. On the
other hand, the width (w) and height (h), are predicted
relative to the whole image. Instead, the confidence is
a score described formally in the equation 1. This value
is intended to reflect how confident the model is about
the presence of an object in that box and how accurate it
thinks its prediction is. It is easy to see that if no object
exists in that cell, this confidence value has to be equal
to zero. Otherwise it should be equal to the intersection
over union between the ground truth and the predicted
box.

𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) * 𝐼𝑜𝑈 𝑡𝑟𝑢𝑡ℎ
𝑝𝑟𝑒𝑑 (1)

Each grid cell also predicts C conditional class probabili-
ties𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡), where the condition is inherent
to the presence of the object in that cell.

Dividing the image into a SxS grid and considering B
bounding boxes for each grid and C class probabilities,
the predictions are encoded as an 𝑆 × 𝑆 × (𝐵 * 5 + 𝐶)
tensor.

In this work we rely on the fifth revision of YOLO ar-
chitecture, known as YOLOv5. The code of this model is
publicy available on the official Ultralytics repository on
GitHub [6] in which YOLOv4 [7] is implemented using
PyTorch. The primary distinction of this architecture,
as opposed to the one discussed in the previous section,
is that it employs anchor boxes instead of predicting
bounding box coordinates directly from the image [8].

Anchor boxes are bounding boxes with predetermined
dimensions, known beforehand. These boxes are found
running a k-means clustering algorithm on training set
bounding boxes to automatically find good priors. This
is because the network learns how to adjust, and so start-
ing from significant priors makes the learning process
easier. Moreover, this architecture consists of a back-
bone, a neck, and a head. The backbone has the role of
extracting relevant features from the input image. The
combination of backbone feature layers happens in the
neck. This is because the feature layers of the convolu-
tional backbone have to be mixed and taken into account
with each other. The head, on the other hand, is where
detection happens. In this case we have three detection
modules, in order to predict boxes at three different scales
using the heads of YOLOv3 [9]

3. Methodology
This section first describes the procedure we devised to
generate the annotated PCB images required to train a
YOLOv5. Next we discuss the procedure to train the
network and the relative performance metrics.

3.1. Dataset Generation
Towards training YOLO, all objects in each training image
must be associated with a bounding box and class identi-
fier. Figure 1 shows an example of the training images
we were provided,a few thousand pictures captured from
11 different PCBs. Each image was acquired by a floating
camera that would center on each component according
to the CAD schematics and take a high resolution picture
of thecomponet and its surroundings. For each image,
only the position of the central component in absolute
PCB coordinates was however known, i.e. no class la-
bel was provided. So, we parsed the CAD schematics
extracting for each component the class (type and case
size) from which we inferred the component bounding
box.

At this point we had images where multiple compo-
nents were present yet only the central component was
annotated. Training YOLO on such images, our prelimi-
nary experiments showed, resulted in a large number of
false negative detections at test time, i.e. verylow recall.
That outcome was predictable, since only the central com-
ponent was annotated whereas the other components
would be presented as background to YOLO at training
time.

To overcome this issue, we developed a workaround
for generating whole images of PCBs where each com-
ponent would be annotated. We recall that each image
was acquired centering the camera onto one of the PCB
components, i.e. such images represent the tiles of a jig-



Figure 2: 60000x20000 pixels image of the CPE010 PCB reconstructed and annotated using 354 crops of single components.
Black areas are due to the lack of components in those areas.

saw puzzle of a PCB. Our strategy consists in populating
an empty canvas with the available images placed at the
position of the central component and reconstructing
the quasi-complete PCB images shown in Figure 2 (the
black holes are due to the lack of components, and hence
training images, in some of its parts). While solving this
jigsaw puzzle, we also recomposed the previously gen-
erated annotation from each image to the reconstructed
image. Following this procedure we successfully recon-
structed and annotated a total of 11 PCBs where each
component is annotated with a label and a bounding box,
as required to properly train YOLO.

Table 1 shows the 36 classes of components considered
in this work. Wepoint out that, give our specific appli-
cation, the component case size has been incorporated
into the class label. Therefore, for a given component
(e.g.,resistor) different classes exist based on the case size
(e.g. Resistor_0402, Resistor_0603 etc..). It is important to
note that all components within the same class have iden-
tical dimensions, except for some classes, which were
created by grouping different components, such as the
class Plastic_packaging.

3.2. Training Procedure and Evaluation
Metrics

YOLO is trained end-to-end minimizing the following
multi-part loss function

𝐿𝑜𝑠𝑠 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑜𝑏𝑗 + 𝜆3𝐿𝑙𝑜𝑐 (2)

where the three terms represent respectively the Binary
Cross Entropy (BCE) loss related to the Classes, the Bi-
nary Cross Entropy (BCE) loss related to the Objectness,
and the Complete-IoU (CIoU) loss for the Location. The

objectness losses of the three prediction layers are also
weighted differently, as reported in Equation 3.

𝐿𝑜𝑏𝑗 = 4.0�̇�
𝑠𝑚𝑎𝑙𝑙
𝑜𝑏𝑗 + 1.0�̇�

𝑚𝑒𝑑𝑖𝑢𝑚
𝑜𝑏𝑗 + 0.4�̇�

𝑙𝑎𝑟𝑔𝑒
𝑜𝑏𝑗 (3)

We trained for 100 epochs a YOLO of the medium size
that was was pretrained on MS the COCO dataset us-
ing the default weights of the loss terms. We used the
hyper-parameters recommended for YOLO, i.e. a learn-
ing rate of 0.01 and a momentum of 0.937. Moreover,
we considered 3 warmup epochs having a momentum of
0.8 and a bias learning rate of 0.1. In particular we used
the SGD as optimizer and a batch-size of 32 crops over
the annotated patches described above. We maintained
the IoU threshold of 0.2 recommended by default for the
object fusion step.

Due to complexity considerations, YOLO was trained
on 5.490 patches sized 1278x958 pixels extracted from
the reconstructed PCB images. Moreover, we augmented
our training set of patches with random rotations, flips
and a random variation of the brightness since these
transformations preserve the size and aspect ratio of the
components.

4. Experimental Results
This section reports some preliminary results we ob-
tained so far using a leave-one-out approach where one
board is left out of the training set and is used for testing.
Namely, we trained 11 distinct instances of YOLO where
in turn one PCB was left out of the training set.

Table 2 shows the mean average precision (mAP) for
the board that was kept in turn out of the training set.

Performance varies significantly from board to board
and our investigations showed correlation with the ratio



Table 1
Number of samples and area of components for each class
over the 11 reconstructed images.

name elements 𝜇𝑚2

Resistor_0402 511 756,81
Resistor_0603 967 1.884,59
Resistor_0805 472 3.885,82
Resistor_1206 47 7.076,86
Resistor_1210 2 6.584,29
Resistor_RMINIMELF 3 7.698,42
Resistor Array 92 7.940,38
Resistor_2010 9 18.547,78
Resistor_2512 20 30.649,76
Capacitor_0402 958 794,03
Capacitor_0603 886 1.710,48
Capacitor_0805 404 3.155,46
Capacitor_1206 93 6.296,04
Capacitor_1210 39 13.096,62
Capacitor_Polar_0603 13 3.990,02
Capacitor_Polar_CMKTA 20 8.554,51
Capacitor_Polar_1411P 3 16.262,89
Capacitor_Polar_CMKTB 1 29.971,18
Capacitor_Polar_CMKTD 20 48.392,77
Capacitor_Polar_CEVPA8X10 4 69.504,67
Inductor_1210 4 13.988,71
Inductor_IND-XAL4020 4 27.742,08
Inductor_INDIHLP2525CZ01 4 67.996,82
Fuse_0603 8 2.121,57
Fuse_FUSESM 6 21.973,29
Fuse_FUSE-SMDC020 2 24.644,09
Led_0805 56 4.483,81
Led_TEKTONE_LED_1411 4 13.329,49
Connector_CMIMA4VFD_SM 2 59.097,38
Connector_CMIMA6VFD 2 76.665,90
Potentiometer_SMRVAR1 1 33.786,26
Relay_RLPICK-117-1A 52 42.563,62
Switch Array_PULSOMRON 1 56.310,86
Diode_DMELF 2 18.398,49
Cylindrical_diode 71 7.481,30 - 7.538,37
Metallic_packaging 6 23.934,04 - 52.777,34
Plastic_packaging 706 878,41 - 70.537,68

of small components on the board, small objects being
harder to detect. In addition, the distribution of compo-
nents at training time varies greatly among PCBs, with
some classes being under-represented at training time.

In Figure 3 are reported the precision-recall curves
of each component for the CPE010 board. We notice
that classes with lowest scores are those less represented
in the train set or with small case size. Classes Capaci-
tor_Polar_CEVPA8X10 and Capacitor_Polar_CMKTB are
a corner case further, as they are present only in the test
board, and so YOLO is not able to predict something that
it has not see in training. However, since the model pre-
dicts these components as Capacitor_Polar_CMKTA, this
affects the precision of this class, as we can see in Figure
5.

For Metallic_packaging and Capacitor_Polar_CMKTD
classes, we are in a similar situation where there are few
instances per class in the dataset and about 1 out of 3
of these components are in the test board. In particular,

Table 2
mAP@0.5 for the board left out of the training set. All board
images are reconstructed from patches but *.

Test set mAP@0.5

CPE010 0.775
JPAMA30-256K SN 0.704
KDBRLYCMDR3 0.850
KEXANADUX70V1 0.952
LI122SM-2_CB533_009 0.819
MPSDRV608 0.882
SPE010-2 0.994
Z010500 SN 0.524
ZCPU7Z0 0.787
ZPROMEA50_SN_02680 0.783
ZPROMEA50_SN_01115 0.812

Mean 0.808
ZPROMEA50_SN_01115* 0.881

Capacitor_Polar_CMKTD is generally confused with the
background or with the class Plastic_packaging, while
the Metallic_packaging is misclassified as background.

YOLO also struggles to distinguish the background
from small components, resulting in instances of the
background misclassified as Resistor_0402. This leads to
the fact that in Figure 5 we observe a low precision value
for this class.

Figure 3: Precision-Recall curve of the CPE010 board

5. Conclusion
In this work we explored the possibility of using a YOLO
object detector for the task of automatically detecting
PCB components soldering defects. The first challenge
we had to undertake was creating a training dataset of



Figure 4: Recall curve of the CPE010 board

Figure 5: Precision curve of the CPE010 board

completely annotated whole PCB images we recomposed
from thousands of unannotated single component images.
Our preliminary experiments show performance seems
to depend on component size and number of training
samples available per class. Our future research includes
enlarging the training set for underrepresented classes at
training time and experimenting on whole PCB images
rather than on the reconstructed images we had available
at themoment of the writing of this article.
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